EGFR, ALK, PD1 and Novel Genomic Targets in Lung Cancer: A Best of ASCO Atlanta 2012 Update

TAILOR OI	bjectives
2007	2011
 TAILOR is designed as a prospective randomized biomarker-based study in wt-EGFR patients treated with erlotinib or docetaxel 	 ASCO's provisional clinical opinions on EGFR status ² TAILOR planned interim analyses with IDMC
 The main objective was to test the interaction of EGFR expression and amplification (IHC/FISH) and KRAS mutations on treatment outcomes¹ 	Based on IDMC suggestions TAILOR was amended. The sample size was re-calculated by 2 independent statisticians blinded to the interim analysis results
¹ Farina G, Clin Lung Cancer. 2011	
Somtailor	ASCO Annual 12 Meeting

Baselii	ne Patien	ts Demo	graphic
		DOCETAXEL (n=110)	ERLOTINIB (n=109)
Median Age, y	ears (range)	67 (35-83)	66 (40-81)
		%	%
Gender	Male	66.4	70.6
	Female	33.6	29.4
ECOG PS	0	48.2	47.7
	1	45.5	44.0
	2	6.3	8.3
Histology	Squamous	20.9	28.4
	Adenocarcinoma	75.5	63.4
	Others	3.6	8.2
Smoking	Smokers (also ex)	71.8	81.7
Habit	Never-smokers	28.2	18.3
KRAS status	Mutated	22.7	23.9
	Wild-type	77.3	76.1
SomTAILO	DR		

<i>.</i>				
ΤΟΧΙϹΙΤΥ	G3-4 E	G3-4 EVENTS		
	DOCETAXEL (n = 104)	ERLOTINIB (n = 107)		
Non haematological toxicity	%	%		
Nausea & Vomiting	3	1		
Asthenia	8	6		
Alopecia (all grades)	29	2		
Dermatological toxicity	0	14		
Diarrhoea	2	3		
Neurological	8	1		
Haematological toxicity	%	%		
Neutropenia	27	1		
Febrile neutropenia	4	0		

Safety Analysis				
	DOCETAXEL (n=104) %	ERLOTINIB (n=107) %		
Patients with SAE ≥ 1	14.4	13.1		
Treatment-related SAEs	3.8	1.8		
Treatment-related deaths	0	0.9		
Treatment-related AEs leading to withdrawal	1.0	0.9		
Treatment-related AEs leading to dose modification	22.1	29.0		
Som TAILOR		ASCO Annual I		

PF	S S	ubgroup	Analys	sis
	N Pts	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio IV, Fixed, 95% CI	Test for Interaction
All	219	0.69 (0.52 - 0.93)		
PS 0/1 PS 2	203 16	0.69 (0.51 - 0.94) 0.85 (0.30 - 2.42) -		p=0.848
Adenocarcinoma Squamous Others	152 54 13	0.72 (0.51 - 1.01) 0.62 (0.33 - 1.15) 1.23 (0.34 - 4.40)	-+- 	p=0.421
Female Male	69 150	0.77 (0.46 - 1.27) 0.67 (0.47 - 0.95)		p=0.734
Never smokers Smokers (also ex)	51 168	0.61 (0.33 - 1.12) 0.72 (0.52 - 1.00)	-+-	p=0.534
KRAS mutated KRAS wild-type	52 167	0.84 (0.47 - 1.52) 0.65 (0.46 - 0.90)	+	p=0.237
	Fav	ours Docetaxel	0.5 0.7 1.5 2	Favours Erlotinib
SotAILOR	2		1	ASC Annual 12 Meeting

Abstract #7508 **Clinical Activity of Crizotinib in Advanced** Non-Small Cell Lung Cancer (NSCLC) **Harboring ROS1 Rearrangement** Alice T. Shaw¹, D. Ross Camidge², Jeffrey A. Engelman¹, Benjamin J. Solomon³, Eunice L. Kwak¹, Jeffrey W. Clark¹, Ravi Salgia⁴, Geoffrey I. Shapiro⁵, Yung-Jue Bang⁶, Weiwei Tan⁷, Lesley Tye⁷, Keith D. Wilner⁷, Patricia Stephenson⁸, Marileila Varella-Garcia², Kristen Bergethon¹, A. John lafrate¹, and Sai-Hong I. Ou⁹ ssachusetts General Hospital Cancer Center, Boston, MA, USA; ²University of orado Cancer Center, Aurora, CO, USA; 3Peter MacCallum Cancer Centre, East bourne, Australia; ⁴University of Chicago Cancer Center, Chicago, IL, USA; Farber Cancer Institute, Boston, MA, USA; 6Seoul National University, Korea; ⁷Pfizer Inc, La Jolla, CA, USA; ⁸Rho, Inc, Chapel Hill, NC; ⁹Chao mily Comprehensive Cancer Center, Orange, CA, USA Presented at the 2012 ASCO Annual Meeting. Presented data is the property of the author. ASCO Annual '12 Meeting

Clinical and Demographic	Characteristics
of Patients with Advanced	ROS1+ NSCLC

		N=15
Age, yrs	Median (range)	54 (31, 72)
Sex, n	M/F	8/7
Smoking history, n (%)	Never	14 (93)
	Former	1 (7)
Race , n (%)	Caucasian	10 (67)
	Asian	4 (27)
	Other	1 (7)
Histology, n (%)	Adenocarcinoma	15 (100)
ECOG PS, n (%)	0	10 (67)
	1	5 (33)
Prior Treatment, n (%)	None	2 (13)
	≥1 regimen	12 (80)
	Not Reported	1 (7)
		PRESENTED AT: ASCON Annual 12

Rapid Responses to Crizotinib in Patients with ROS1-Positive NSCLC

Significant Responses to Crizotinib in Patients with ROS1-Positive NSCLC

PRESENTED AT: ASCON Annual 12

Treatment-related Adverse Events Reported in ≥ 10% of ROS1-Positive NSCLC Patients

	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Total* n (%)
Visual impairment	13 (87)	0	0	13 (87)
AST increased	3 (20)	0	1 (7)	4 (27)
Diarrhea	4 (27)	0	0	4 (27)
Hypophosphatemia	0	3 (20)	1 (7)	4 (27)
Peripheral edema	3 (20)	1 (7)	0	4 (27)
ALT increased	1 (7)	1 (7)	1 (7)	3 (20)
Dysgeusia	3 (20)	0	0	3 (20)
Nausea	3 (20)	0	0	3 (20)
Vomiting	3 (20)	0	0	3 (20)
Alk Phos increased	2 (13)	0	0	2 (13)
Neutropenia	1 (7)	0	1 (7)	2 (13)
Sinus bradycardia	2 (13)	0	0	2 (13)

LDK378 has antitumor activity in ALK+ NSCLC					
	Initial dose (mg)	Evaluable Patients (n)	Responses (PR)		
	< 400	8	2 (25)		
NSCLC	≥ 400	33	22 (67)		
Other diseases	50 – 600	6	0		
 Of the 24 reconfirmed, Response treated at ≥ 	esponding patien and 7 are awaitir rate was 81% (21 2 400 mg who pro	ts, 11 respon og confirmato I/26) in patier ogressed follo	ses were ry scans nts with NSCLC wing crizotinib		
11 LDK378 in Advanced Solid	JTumors)	-	ASCO Annual'12 Meeting		

Clinical Activity and Safety of Anti-PD-1 (BMS-936558, MDX-1106) in Patients with Advanced Non-Small-Cell Lung Cancer

J.R. Brahmer,¹ L. Horn,² S.J. Antonia,³ D. Spigel,⁴ L. Gandhi,⁵ L.V. Sequist,⁶ J.M. Wigginton,⁷ D. McDonald,⁷ G. Kollia,⁷ A. Gupta,⁷ S. Gettinger⁸

Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD; anderbilt Ingram Cancer Center, Nashville, TN; ³H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ⁴Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁵Massachusetts General Hospital Cancer Center, Boston, MA; ⁷Bristol-Myers Squibb, Princeton, NJ; ⁸Yale University School of Medicine, New Haven, CT

sented at the 2012 ASCO Annual Meeting. Presented data is the property of the author. ASCO Annual '12

<section-header> Background Immunotherapy in NSCLC: Immunotherapy historically not successful in NSCLC Resurgence of interest over past decade Vaccines Check-point inhibitors: Preliminary evidence of activity with CTLA-4 and chemotherapy ^{1,2} ¹unt T, et al. Uno not 2012 "Genova C, et al. Expert optime to the contact of t

- Primary
 - Assessment of safety and tolerability of BMS-936558
- Secondary/Exploratory
 - Assessment of antitumor activity
 - Pharmacodynamic evaluation
- Accrual completed (Dec. 2011); patient assessment ongoing
- Current analysis for patients treated through Feb. 2012
 - 296 patients (122 with NSCLC) were evaluable for safety
 - 236 patients (76 with NSCLC) were evaluable for clinical activity

Baseline Characteristic	n=122
Median age (range), yr	65 (38-85)
Male, no. (%)	74 (61)
Tumor histology, no. (%)*	
Squamous	47 (39)
Non-squamous	73 (60)
ECOG PS, no. (%) [†]	•
0-1	117 (96)
2	2 (2)
Number of prior therapies, no. (9	%) [‡]
1-2	49 (40)
≥3	67 (55)
Nature of prior therapy, no. (%)	
Platinum-based chemotherap	y 115 (94)
Tyrosine-kinase inhibitor	41 (34)
Radiotherapy	40 (33)

	All G	All Grades		Grades 3-4	
Drug-Related	Tot Pop*	NSCLC	Tot Pop	NSCLC [†]	
	No	. (%) of Pati	ents, All Do	ses	
Any adverse event	207 (70)	78 (64)	41 (14)	10 (8)	
Fatigue	72 (24)	22 (18)	5 (2)	2 (2)	
Rash	36 (12)	5 (4)	—	—	
Diarrhea	33 (11)	7 (6)	3 (1)	1 (1)	
Pruritus	28 (9)	6 (5)	1 (0.3)		
Nausea	24 (8)	9 (7)	1 (0.3)		
Appetite +	24 (8)	12 (10)	—	—	
Hemoglobin 🖡	19 (6)	10 (8)	1 (0.3)		
Pyrexia	16 (5)	7 (6)	_		

*AEs occurring in \geq 5% of the total population.

[†] The most common grade 3-4 AEs were fatigue, pneumonitis, and elevated AST (2 pts each). An additional 16 grade 3-4 drug-related AEs were observed and one or more occurred in a single patient.

NSCLC Patients						
Рор	Dose (mg/kg)	Pts n	ORR n (%)	Duration of Response (mo)	SD ≥24 wk n (%)	PFSR at 24 wk (%)
ALL NSCLC	1-10	76	14 (18)	1.9+ to 30.8+	5 (7)	26
	1	18	1 (6)	9.2+	1 (6)	16
NSCLC	3	19	6 (32)	1.9+ to 30.8+	2 (11)	41
	10	39	7 (18)	3.7 to 14.8+	2 (5)	24

• 3 NSCLC patients had a persistent reduction in baseline target lesions in the presence of new lesions but were not classified as responders for the ORR calculation

Parameter	BMS-936558 Dose, mg/kg			
	1	3	10	
ORR, No. patients* (%)		1	
Squamous	0	3 (50)	3 (43)	
	n=5	n=6	n=7	
Non-squamous	0	3 (23)	4 (13)	
	n=12	n=13	n=31	
SD ≥24 wk, No. patie	ents (%)			
Squamous	0	0	0	
Non-squamous	1 (8)	2 (15)	2 (6)	
PFSR at 24 wk, (%)			·	
Squamous	0	50	43	
Non-squamous	14	37	21	

Therapeutic targets in squamous cell lung carcinoma						
	Gene	Event Type	Frequency			
	CDKN2A	Deletion/Mutation/ Methylation	72%			
	PI3KCA	Mutation	16%			
	PTEN	Mutation/Deletion	15%			
	FGFR1	Amplification	15%			
	EGFR	Amplification	9%			
	PDGFRA	Amplification/Mutati on	9%			
	CCND1	Amplification	8%			
	DDR2	Mutation	4%			
	BRAF	Mutation	4%			
	ERBB2	Amplification	4%			
	FGFR2	Mutation	3%			
PRESENTED AT: ASCON Annual 12 Meeting						

EGFR, ALK PD-1 and Other Novel Genomic Targets: Conclusions post ASCO

- LUX-1 study suggests afatinib is a potent front-line irreversible EGFR TKI for EGFR mutant lung cancer and Dacomitinib also looks promising in this population.
- Docetaxel appears more effective than erlotinib in second line therapy of EGFR wild type NSCLC.
- Crizotinib is just as active in ROS1 translocations as it is in ALK translocated lung cancer and LDK378, a highly potent new ALK inhibitor, is moving quickly into ALK translocated NSCLC.
- Targeting PD1 is a viable and exciting approach, especially in squamous cell lung cancer.
- Exciting new targets in squamous cell cancer are being described via the TCGA.