2014 Best of ASCO: Novel Immunotherapy for Kidney (and Bladder) Cancer

Robert J. Motzer, MD

Memorial Sloan-Kettering Cancer Center
Treatment options for patients with mRCC have been revolutionised in a short period of time...

Renal Cell Carcinoma

Clear Cell Carcinoma (75%)
- LOH - 3p25
- VHL mutation (60-70%)
- Hypermethylation (5-20%)

Type 1 c-met mutation
Type 2 FH mutation

Proximal Nephron
- Papillary Carcinoma (15%)

Distal Nephron
- Chromophobe (5%)

Oncocytoma (5%)

Collecting Duct, Undifferentiated (rare)
Phase III Trial Sunitinib vs IFN-α: Progression-free Survival

HR = 0.538
95% CI (0.439, 0.658)

P < .00001

Sunitinib
Median: 11.0 months
(95% CI: 10.7–13.4)

IFN-α
Median: 5.1 months
(95% CI: 3.9–5.6)

No. at Risk
Sunitinib: 375 240 156 54 10 1
IFN-α: 375 124 46 15 4 0

PFS probability
Treatments for Clear-cell mRCC

<table>
<thead>
<tr>
<th>Setting</th>
<th>Patients</th>
<th>Level 1*</th>
<th>≥ Level 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-line</td>
<td>Good- or intermediate-risk</td>
<td>Sunitinib
Bevacizumab + IFN-α
Pazopanib</td>
<td>High-dose IL-2</td>
</tr>
<tr>
<td></td>
<td>Poor-risk</td>
<td>Temsirolimus
Sunitinib</td>
<td></td>
</tr>
<tr>
<td>Second-line</td>
<td>Prior VEGF TKI</td>
<td>Everolimus
Axitinib</td>
<td>Sorafenib</td>
</tr>
</tbody>
</table>

Challenges in Clinical Outcome With Targeted Drugs

- Few complete responses
- Plateau in efficacy
- Primary treatment refractory
- Acquired resistance
- Survival benefit elusive in trials
- Chronic toxicities
Challenges in Clinical Outcome With Targeted Drugs

- Few complete responses
- Plateau in efficacy
- Primary treatment refractory
- Acquired resistance
- Survival benefit elusive in trials
- Chronic toxicities

NEW DRUGS ARE NEEDED WITH A NOVEL MECHANISM OF ACTION
Binding of PD-1 to its ligands PD-L1 and PD-L2 leads to downregulation of the antitumor immune response

Nivolumab is a fully human IgG4 PD-1 immune checkpoint inhibitor

Nivolumab selectively blocks the PD-1 and PD-L1/PD-L2 interaction, restoring antitumor T-cell function

IFNy, interferon gamma; MHC, major histocompatibility complex; PD-1, programmed death-1; PD-L1, programmed death-ligand

ASCO 2014 Abstracts

• Abstract 5009: Nivolumab for metastatic renal cell carcinoma: results of a randomized, dose-ranging phase II trial
• Abstract 5012: Immunomodulatory activity of nivolumab in previously treated and untreated metastatic renal cell carcinoma: biomarker-based results from a randomized clinical trial
• Abstract 5010: Nivolumab in combination with sunitinib or pazopanib in patients with metastatic renal cell carcinoma
• Abstract 4504: Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma
Nivolumab for metastatic renal cell carcinoma (mRCC): results of a randomized, dose-ranging phase II trial

Phase II study design

Key Criteria
- mRCC with clear-cell component
- ≥1 prior antiangiogenic agent
- 1–3 prior therapies
- Disease progression after last therapy and within 6 mos of enrollment
- KPS ≥70%
- Adequate organ function

Arm 1
0.3 mg/kg nivolumab IV Q3 weeks

Arm 2
2 mg/kg nivolumab IV Q3 weeks

Arm 3
10 mg/kg nivolumab IV Q3 weeks

Treat until progression or intolerable toxicity

Primary Objective: To assess whether a dose–response relationship exists in the 0.3, 2, and 10 mg/kg arms as measured by PFS (RECIST v1.1)

Secondary Objectives: Estimation of PFS, ORR, OS, and adverse event rate

Exploratory Objectives: Pharmacokinetics, PD-L1 expression (prototype assay)

ClinTrials.gov NCT01354431

Treatment arms blinded. Stratified by MSKCC prognostic score (0 vs 1 vs 2/3) and number of prior lines of therapy in the metastatic setting (1 vs >1).
Prior therapy in metastatic setting

<table>
<thead>
<tr>
<th>Prior nephrectomy, %</th>
<th>0.3 (n = 60)</th>
<th>2.0 (n = 54)</th>
<th>10 (n = 54)</th>
<th>Total (N = 168)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>91</td>
<td>94</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior systemic regimens, %</th>
<th>0.3 (n = 60)</th>
<th>2.0 (n = 54)</th>
<th>10 (n = 54)</th>
<th>Total (N = 168)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>35</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>40<sup>a</sup></td>
<td>35</td>
<td>24</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common prior systemic therapies, %<sup>b</sup></th>
<th>0.3 (n = 60)</th>
<th>2.0 (n = 54)</th>
<th>10 (n = 54)</th>
<th>Total (N = 168)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>77</td>
<td>78</td>
<td>69</td>
<td>74</td>
</tr>
<tr>
<td>Everolimus</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>25</td>
<td>33</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Interleukin-2</td>
<td>25</td>
<td>20</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>22</td>
<td>15</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

^a1 patient (2%) in the 0.3 mg/kg group received >3 prior systemic therapies in the metastatic setting. ^b>20% of patients in any group.
Progression-free survival

<table>
<thead>
<tr>
<th>Number of patients at risk</th>
<th>Median PFS, months (80% CI)</th>
<th>Stratified trend test P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mg/kg</td>
<td>2.7 (1.9, 3.0)</td>
<td>0.9</td>
</tr>
<tr>
<td>2 mg/kg</td>
<td>4.0 (2.8, 4.2)</td>
<td></td>
</tr>
<tr>
<td>10 mg/kg</td>
<td>4.2 (2.8, 5.5)</td>
<td></td>
</tr>
</tbody>
</table>

Symbols represent censored observations.

Number of patients at risk

<table>
<thead>
<tr>
<th>0.3 mg/kg</th>
<th>2 mg/kg</th>
<th>10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Time (months)

0 3 6 9 12 15 18 21 24
Objective responses

<table>
<thead>
<tr>
<th>Nivolumab, mg/kg</th>
<th>0.3 (n = 60)</th>
<th>2.0 (n = 54)</th>
<th>10 (n = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, n (%)<sup>a</sup></td>
<td>12 (20)</td>
<td>12 (22)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>(80% CI)</td>
<td>(13.4, 28.2)</td>
<td>(15.0, 31.1)</td>
<td>(13.4, 29.1)</td>
</tr>
<tr>
<td>Duration of response, median (80% CI), months<sup>b</sup></td>
<td>NR (NR, NR)</td>
<td>NR (4.2, NR)</td>
<td>22.3 (4.8, NR)</td>
</tr>
<tr>
<td>Best overall response, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Partial response</td>
<td>18</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Stable disease</td>
<td>37</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>Progression</td>
<td>40</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

^aORR defined by RECIST v1.1; data cutoff May 15, 2013. ^bDerived from the Kaplan–Meier estimate; data cutoff March 5, 2014. NR, not reached.
Duration of response

- 0.3 mg/kg (n=12)
- 2 mg/kg (n=12)
- 10 mg/kg (n=11)

Based on data cutoff of March 5, 2014.
Treatment-related adverse events (≥10% of patients in any arm)

<table>
<thead>
<tr>
<th>Patients with event, %</th>
<th>Nivolumab, mg/kg</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any grade</td>
<td>Grade 3-4</td>
<td>Any grade</td>
<td>Grade 3-4</td>
<td>Any grade</td>
<td>Grade 3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3 (n=59)</td>
<td>2.0 (n=54)</td>
<td>10 (n=54)</td>
<td>10 (n=54)</td>
<td>10 (n=54)</td>
<td>10 (n=54)</td>
<td></td>
</tr>
<tr>
<td>Any event</td>
<td>75</td>
<td>5</td>
<td>67</td>
<td>17</td>
<td>78</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>24</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>9</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Appetite decreased</td>
<td>3</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dry mouth</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dry skin</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Treatment-related select adverse events

<table>
<thead>
<tr>
<th>Category, %</th>
<th>Nivolumab, mg/kg</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Any grade</td>
<td>Grade 3/4</td>
<td>Any grade</td>
<td>Grade 3/4</td>
<td>Any grade</td>
</tr>
<tr>
<td>Skin</td>
<td>0.3 (n = 59)</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>2.0 (n = 54)</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Endocrine</td>
<td>10 (n = 54)</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Hepatic</td>
<td></td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary</td>
<td></td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Hypersensitivity/infusion reaction</td>
<td></td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- No treatment-related grade 3/4 pneumonitis events or grade 5 events were reported.
Overall survival

Based on data cutoff of March 5, 2014; Symbols represent censored observations.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS, months (80% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mg/kg</td>
<td>18.2 (16.2, 24.0)</td>
</tr>
<tr>
<td>2 mg/kg</td>
<td>25.5 (19.8, 28.8)</td>
</tr>
<tr>
<td>10 mg/kg</td>
<td>24.7 (15.3, 26.0)</td>
</tr>
</tbody>
</table>

Number of patients at risk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0.3 mg/kg</th>
<th>2 mg/kg</th>
<th>10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>At risk</td>
<td>60</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>3 months</td>
<td>56</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>6 months</td>
<td>50</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>9 months</td>
<td>41</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>12 months</td>
<td>37</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>15 months</td>
<td>35</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>18 months</td>
<td>31</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>21 months</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>24 months</td>
<td>24</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>27 months</td>
<td>13</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>30 months</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>33 months</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Based on data cutoff of March 5, 2014; Symbols represent censored observations.
Overall survival in phase III trials and nivolumab phase II study

<table>
<thead>
<tr>
<th>Drug</th>
<th>AXIS<sup>1,a</sup></th>
<th>INTERSECT<sup>2</sup></th>
<th>RECORD-1<sup>3</sup></th>
<th>GOLD<sup>4</sup></th>
<th>Nivolumab study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axitinib; sorafenib</td>
<td>Temsirolimus; sorafenib</td>
<td>Everolimus; placebo</td>
<td>Dovitinib; sorafenib</td>
<td>Nivolumab; 0.3; 2; 10 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Patients, n</td>
<td>389</td>
<td>512</td>
<td>416</td>
<td>570</td>
<td>168</td>
</tr>
<tr>
<td>Risk group, %<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>Not stated</td>
<td>19</td>
<td>29</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td>69</td>
<td>56</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>Poor</td>
<td>12</td>
<td>14</td>
<td>22</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Prior therapy</td>
<td>Sunitinib</td>
<td>Sunitinib</td>
<td>VEGF</td>
<td>VEGF + mTOR</td>
<td>VEGF ± mTOR</td>
</tr>
<tr>
<td>Line of therapy</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd or higher</td>
<td>3rd or higher</td>
<td>2nd to 4th</td>
</tr>
</tbody>
</table>

^aPost TKI subset. ^bTotal ≠100% due to rounding. ^c95% CI. ^d80% CI.

Overall survival in phase III trials and nivolumab phase II study

<table>
<thead>
<tr>
<th>Drug</th>
<th>AXIS1,a</th>
<th>INTORSECT2</th>
<th>RECORD-13</th>
<th>GOLD4</th>
<th>Nivolumab study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axitinib; sorafenib</td>
<td>Temsirolimus; sorafenib</td>
<td>Everolimus; placebo</td>
<td>Dovitinib; sorafenib</td>
<td>Nivolumab; 0.3; 2; 10 mg/kg</td>
</tr>
<tr>
<td>Patients, n</td>
<td>389</td>
<td>512</td>
<td>416</td>
<td>570</td>
<td>168</td>
</tr>
<tr>
<td>Risk group, %b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>Not stated</td>
<td>19</td>
<td>29</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td>69</td>
<td>56</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td>12</td>
<td>14</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Prior therapy</td>
<td>Sunitinib</td>
<td>Sunitinib</td>
<td>VEGF</td>
<td>VEGF + mTOR</td>
<td>VEGF ± mTOR</td>
</tr>
<tr>
<td>Line of therapy</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd or higher</td>
<td>3rd or higher</td>
<td>2nd to 4th</td>
</tr>
<tr>
<td>Median OS, months</td>
<td>15.2; 16.5</td>
<td>12.3; 16.6</td>
<td>14.8; 14.4</td>
<td>11.1; 11.0</td>
<td>18.2; 25.5; 24.7</td>
</tr>
<tr>
<td>CI</td>
<td>12.8, 18.3c</td>
<td>10.1, 14.8c</td>
<td>Not stated</td>
<td>9.5, 13.4c</td>
<td>16.2, 24.0d</td>
</tr>
<tr>
<td></td>
<td>13.7, 19.2c</td>
<td>13.6, 18.7c</td>
<td>8.6, 13.5c</td>
<td>19.8, 28.8d</td>
<td>15.3, 26.0d</td>
</tr>
</tbody>
</table>

aPost TKI subset. bTotal ≠100% due to rounding. c95% CI. d80% CI.

Immunomodulatory activity of nivolumab in previously treated and untreated metastatic renal cell carcinoma (mRCC): biomarker-based results from a randomized clinical trial

Toni K. Choueiri, Mayer N. Fishman, Bernard Escudier, Jenny J. Kim, Harriet Kluger, Walter M. Stadler, Jose Luis Perez-Gracia, Douglas McNeel, Brendan Curti, Michael Harrison, Elizabeth R. Plimack, Leonard Appleman, Lawrence Fong, Charles G. Drake, Lewis Cohen, Shivani Srivastava, Maria Jure-Kunkel, Quan Hong, John F. Kurland, Mario Sznol

1Dana-Farber Cancer Institute, Boston, MA, USA; 2H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; 3Institut Gustave Roussy, Villejuif, France; 4Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; 5Yale Cancer Center, New Haven, CT, USA; 6University of Chicago Medicine, Chicago, IL, USA; 7University Clinic of Navarra, Pamplona, Spain; 8University of Wisconsin-Madison, Department of Medicine, Madison, WI, USA; 9Providence Cancer Center, Providence Portland Medical Center, Portland, OR, USA; 10Duke University Medical Center, Durham, NC, USA; 11Fox Chase Cancer Center, Philadelphia, PA, USA; 12University of Pittsburgh Medical Center (UPMC) Cancer Pavilion, Pittsburgh, PA, USA; 13University of California San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; 14Bristol-Myers Squibb, Princeton, NJ, USA
Nivolumab mechanism of action: seeking pharmacodynamic and correlative evidence

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Expected observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab reactivates T cells, resulting in expansion and tumor-directed migration</td>
<td>↑ in CD3+ and CD8+ cells and transcripts in tumor biopsies</td>
</tr>
<tr>
<td>Cytokines associated with T-cell expansion and migration will be released</td>
<td>↑ in IFNγ signaling in tumor microenvironment and serum (CXCL9a, CXCL10b)</td>
</tr>
<tr>
<td>Pretreatment measures of exhaustion represent a T-cell response that may be stimulated by nivolumab, resulting in antitumor activity</td>
<td>Pretreatment PD-L1 expression on tumor associates with clinical response</td>
</tr>
<tr>
<td>Changes in tumor-directed migration of T cells associates with antitumor activity</td>
<td>↑ in CD3+ and/or CD8+ cells associates with clinical response</td>
</tr>
</tbody>
</table>

Study design

- Archival nephrectomy specimen
- Fresh tissue biopsy from a metastasis (baseline)
- Fresh tissue biopsy from a metastasis (C2D8)

mRCC (clear cell) after antiangiogenic therapy (n=67)
- 1-3 prior therapies
- Progressed from most recent therapy within 6 months
- KPS ≥70%

Arm 1
Nivolumab 0.3 mg/kg IV Q3W

Arm 2
Nivolumab 2 mg/kg IV Q3W

Arm 3
Nivolumab 10 mg/kg IV Q3W

Arm 4
Nivolumab 10 mg/kg IV Q3W

Treat until progression or intolerable toxicity

Treatment-naïve mRCC (clear cell) (n=24)
- KPS ≥70%

- Serum and whole blood sampled at baseline and throughout study period

CR, complete response; C2D8, cycle 2, day 8.
Clinical activity

<table>
<thead>
<tr>
<th></th>
<th>Previously treated (n=67)</th>
<th>Treatment-naïve (n=23)</th>
<th>All (N=90)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivolumab 0.3 mg/kg (n=22)</td>
<td>Nivolumab 2.0 mg/kg (n=22)</td>
<td>Nivolumab 10 mg/kg (n=23)</td>
</tr>
<tr>
<td>Objective response rate, n (%); (95% CI)(^a)</td>
<td>2 (9) (1.1-29.2)</td>
<td>5 (23) (7.8-45.4)</td>
<td>5 (22) (7.5-43.7)</td>
</tr>
<tr>
<td>Best response, n (%)</td>
<td>Partial response (PR)</td>
<td>2 (9)</td>
<td>5 (23)</td>
</tr>
<tr>
<td></td>
<td>Unconfirmed PR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Stable disease (SD)</td>
<td>5 (23)</td>
<td>6 (27)</td>
</tr>
<tr>
<td>Progression-free survival rate, % (95% CI)</td>
<td>24 weeks</td>
<td>18 (6-36)</td>
<td>32 (14-51)</td>
</tr>
</tbody>
</table>

- Secondary endpoints: tumor response for all subjects determined as defined by RECIST v1.1 criteria

\(^a\)CR, PR, unconfirmed CR, unconfirmed PR; \(^b\)90 pts were evaluable for response.
Response according to PD-L1 status by IHC

- 56 evaluable fresh pretreatment biopsies:
 - Minimum of 100 tumor cells (DAKO assay; antibody 28-8)
 - PD-L1+ specimens defined by plasma membrane staining on ≥5% of tumor cells
 - 18 of 56 (32%) samples were PD-L1+

- Response rate:
 - PD-L1(+) 4/18 (22%)
 - PD-L1(-) 3/38 (8%)

- 81% (22/27) of matched fresh specimens showed a <5% increase in tumor membrane PD-L1 expression from baseline to C2D8
Tumor T-cell infiltrates at baseline correlate with tumor burden decrease

Moving average; NOT linear regression.
CD3/CD8 multiplexed IHC and tumor T-cell infiltrates

<table>
<thead>
<tr>
<th>Median increase in T cell infiltrates (CD3/CD8 multiplexed IHC), baseline to C2D8 (%)</th>
<th>All</th>
<th>0.3 mg/kg</th>
<th>2 mg/kg</th>
<th>10 mg/kg</th>
<th>10 mg/kg (naïve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+</td>
<td>78%</td>
<td>115%</td>
<td>140%</td>
<td>80%</td>
<td>62%</td>
</tr>
<tr>
<td>CD8+</td>
<td>88%</td>
<td>257%</td>
<td>162%</td>
<td>139%</td>
<td>61%</td>
</tr>
</tbody>
</table>

- Increase in TILs seen in previously treated & treatment-naïve patients, independent of dose levels

Total number of cells counted in region chosen by pathologist (automated software assessment)
Percentage of CD3+, CD8+ and CD3/8+ determined
Baseline and on-treatment tumor T-cell infiltrates (CD3 and CD8): association with response

N=33

Individual responder

Individual nonresponder

Responder median

Nonresponder median
Nivolumab (anti-PD-1; BMS-936558; ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC)

Dose escalation

S + N arm
- S + N2: n=7 pretreated patients
- S + N5: n=7 pretreated patients
- S + N5 expansion: n=19 treatment-naïve patients

P + N arm
- P + N2: n=20 pretreated patients
Baseline patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>S + N (n=33)</th>
<th>P + N (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean (SD)</td>
<td>58.0 (9.1)</td>
<td>56.3 (8.5)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>26 (78.8)</td>
<td>18 (90.0)</td>
</tr>
<tr>
<td>Female</td>
<td>7 (21.2)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>MSKCC risk category, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>8 (24.2)</td>
<td>4 (20.0)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>24 (72.7)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td>Poor</td>
<td>1 (3.0)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>Surgery, n (%)</td>
<td>33 (100)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>Radiotherapy, n (%)</td>
<td>5 (15.2)</td>
<td>10 (50)</td>
</tr>
<tr>
<td>Systemic therapy, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF-TKI</td>
<td>14 (42.4)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>5 (15.2)</td>
<td>17 (85.0)</td>
</tr>
<tr>
<td>Cytokine</td>
<td>2 (6.1)</td>
<td>0</td>
</tr>
<tr>
<td>mTOR inhibitor</td>
<td>9 (27.3)</td>
<td>10 (50.0)</td>
</tr>
<tr>
<td>Prior lines of therapy, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14 (42.4)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td>≥2</td>
<td>0</td>
<td>6 (30.0)</td>
</tr>
</tbody>
</table>
Antitumor activity (per RECIST 1.1)

<table>
<thead>
<tr>
<th></th>
<th>S + N (n=33)</th>
<th>P + N (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed ORR, n (%)</td>
<td>17 (52)</td>
<td>9 (45)</td>
</tr>
<tr>
<td>95% CI</td>
<td>33.5-69.2</td>
<td>23.1-68.5</td>
</tr>
<tr>
<td>Median duration of response, weeks (range)</td>
<td>37.1 (18.1-80+)(^a)</td>
<td>30.1 (12.1-90.1+)(^b)</td>
</tr>
<tr>
<td>Ongoing responses, % (n/N)</td>
<td>59 (10/17)</td>
<td>33 (3/9)</td>
</tr>
<tr>
<td>Best overall response, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>1 (3)</td>
<td>0</td>
</tr>
<tr>
<td>Partial response</td>
<td>16 (48)</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>10 (30)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>1 (3)</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Unable to determine</td>
<td>4 (12)</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\)Median follow-up 54.7 weeks; \(^b\)Median follow-up 76.5 weeks.
Duration of response defined as time between date of first response and date of disease progression or death (whichever occurs first).
ORR, objective response rate.
Grade 3-4 treatment-related AEs in ≥ 10% of patients

<table>
<thead>
<tr>
<th></th>
<th>S + N (n=33)</th>
<th>P + N2 (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients with an event, n (%)</td>
<td>33 (100)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>16 (48.5)</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>13 (39.4)</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>6 (18.2)</td>
<td>0</td>
</tr>
<tr>
<td>Increased lymphocyte count</td>
<td>6 (18.2)</td>
<td>1 (5.0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>20 (60.6)</td>
<td>12 (60.0)</td>
</tr>
<tr>
<td>Increased AST</td>
<td>12 (36.4)</td>
<td>6 (30.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>27 (81.8)</td>
<td>12 (60.0)</td>
</tr>
</tbody>
</table>

- Patients with any event (any grade): 53 (100%)
- No grade 5 treatment-related AEs were observed
- Most toxicities were consistent with the known profile of TKIs
Abstract 4504

Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC)

Mechanism of action

CTLA-4 Blockade (ipilimumab)

PD-1 Blockade (nivolumab)

Activation (cytokines, lysis, proliferation, migration to tumor)

Tumor Microenvironment

MHC, major histocompatibility complex; TCR, T-cell receptor.
CA209-016 (NCT01472081): phase I study design (N + I cohort)

Patients with mRCC:

- Previously treated or treatment naïve
- Randomization

Arm N3 + I1
Nivolumab 3 mg/kg IV +
Ipilimumab 1 mg/kg IV
Q3W x4

Arm N1 + I3
Nivolumab 1 mg/kg IV +
Ipilimumab 3 mg/kg IV
Q3W x4

Continuous
Nivolumab
3 mg/kg IV
Q2W

- Primary endpoint: Safety (AEs, laboratory tests)
- Secondary endpoint: Efficacy (ORR, duration of response, PFS)
- Exploratory endpoint: Response by tumor PD-L1 status
- Study assessments: Tumor response (RECIST v1.1) evaluated at screening, every 6 weeks (first 4 assessments), then every 12 weeks until disease progression

ORR, objective response rate.
TKI cohort presented by Amin A et al. ASCO 2014, Abstract 5010
Nivolumab plus Ipilimumab Treatment administration

- **Dosing schedule:**

 - **Induction:**
 - Dose 1: Nivolumab IV + ipilimumab IV Q3W × 4
 - Dose 2: Nivolumab 3 mg/kg IV Q2W for both arms

 - **Continuous:**

- At induction visits, patients received 2 infusions
 - 1st infusion was always nivolumab (1 or 3 mg/kg)
 - Ipilimumab (1 or 3 mg/kg) infusion was started ≥30 min after completion of nivolumab infusion
Baseline patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N3 + I1 (n=21)</th>
<th>N1 + I3 (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean (SD)</td>
<td>53.2 (8.26)</td>
<td>53.5 (11.24)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>17 (81.0)</td>
<td>21 (91.3)</td>
</tr>
<tr>
<td>MSKCC risk category, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>5 (23.8)</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>16 (76.2)</td>
<td>18 (78.3)</td>
</tr>
<tr>
<td>Poor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Radiotherapy, n (%)</td>
<td>7 (33.3)</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td>Systemic treatments, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiangiogenic</td>
<td>17 (81.0)</td>
<td>18 (78.3)</td>
</tr>
<tr>
<td>Cytokine</td>
<td>10 (47.6)</td>
<td>15 (65.2)</td>
</tr>
<tr>
<td>mTOR inhibitor</td>
<td>12 (57.1)</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Prior lines of therapy, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4 (19.0)</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>1</td>
<td>11 (52.4)</td>
<td>11 (47.8)</td>
</tr>
<tr>
<td>2</td>
<td>3 (14.3)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>>2</td>
<td>3 (14.3)</td>
<td>6 (26.1)</td>
</tr>
</tbody>
</table>

- All patients had prior nephrectomy except for 1 in the N3 + I1 arm, and 2 in N1 + I3 arm
<table>
<thead>
<tr>
<th></th>
<th>N3 + I1 (n=21)</th>
<th>N1 + I3 (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed ORR, n (%)</td>
<td>9 (43)</td>
<td>11 (48)</td>
</tr>
<tr>
<td>95% CI</td>
<td>21.8-66.0</td>
<td>26.8-69.4</td>
</tr>
<tr>
<td>Median duration of response, weeks (range)<sup>a</sup></td>
<td>31.1 (4.1+-42.1+)<sup>b</sup></td>
<td>NR (12.1+-35.1+)<sup>c</sup></td>
</tr>
<tr>
<td>Ongoing responses, % (n/N)</td>
<td>78 (7/9)</td>
<td>82 (9/11)</td>
</tr>
<tr>
<td>Best objective response, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>0</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Partial response</td>
<td>9 (43)</td>
<td>10 (43)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>5 (24)</td>
<td>8 (35)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>5 (24)</td>
<td>3 (13)</td>
</tr>
<tr>
<td>Unable to determine</td>
<td>1 (5)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>24-week PFS, % (95% CI)</td>
<td>65 (40-82)</td>
<td>64 (41-80)</td>
</tr>
</tbody>
</table>

^aDue to the high percentage of ongoing responses, median duration of response may be misleading; ^bMedian follow-up 36.1 weeks; ^cMedian follow-up 40.1 weeks
Duration of response defined as time between date of first response and date of disease progression or death (whichever occurs first).
Change from baseline in target tumor burden

N3 + I1 (n=20)
N1 + I3 (n=22)

Positive change in tumor burden indicates tumor growth; negative change indicates tumor reduction.
Responders at first assessment (6 weeks):
N3 + I1 = 4/9 (44.4%)
N1 + I3 = 6/11 (54.5%)

Ongoing responders:
N3 + I1 = 7/9 (77.8%)
N1 + I3 = 9/11 (81.8%)

Patients discontinuing treatment (not due to progression) who continued to respond:
N3 + I1 = 3/9 (33.3%)
N1 + I3 = 5/11 (45.5%)

- Median duration of response (DOR) for N3 + I1 was 31 weeks
- Median DOR was not reached in the N1 + I3 arm at 40.1 weeks follow-up
Nivolumab plus Ipilimumab

Treatment-related AEs

<table>
<thead>
<tr>
<th></th>
<th>N3 + I1 (n=21)</th>
<th>N1 + I3 (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients with an event, n (%)</td>
<td>16 (76.2)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>11 (52.4)</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td>Rash</td>
<td>8 (38.1)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>6 (28.6)</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6 (28.6)</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>4 (19.0)</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>4 (19.0)</td>
<td>9 (39.1)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>4 (19.0)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Chills</td>
<td>3 (14.3)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 (14.3)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>3 (14.3)</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Lipase increased</td>
<td>3 (14.3)</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Amylase increased</td>
<td>1 (4.8)</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td>ALT increased</td>
<td>1 (4.8)</td>
<td>9 (39.1)</td>
</tr>
<tr>
<td>AST increased</td>
<td>0</td>
<td>9 (39.1)</td>
</tr>
</tbody>
</table>

- No grade 5 treatment-related AEs were reported.

Hammers et al. JCO 32S; Abstr 4504, 2014
Nivolumab plus Ipilimumab
Treatment-related select AE categories

<table>
<thead>
<tr>
<th>Category, n (%)</th>
<th>N3 + I1 (n=21)</th>
<th>N1 + I3 (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Grade 3-4</td>
</tr>
<tr>
<td>Endocrinopathy</td>
<td>3 (14.3)</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal disorder</td>
<td>6 (28.6)</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Hepatic</td>
<td>1 (4.8)</td>
<td>0</td>
</tr>
<tr>
<td>Infusion reaction</td>
<td>2 (9.5)</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>1 (4.8)</td>
<td>0</td>
</tr>
<tr>
<td>Renal disorder</td>
<td>2 (9.5)</td>
<td>0</td>
</tr>
<tr>
<td>Skin disorder</td>
<td>8 (38.1)</td>
<td>0</td>
</tr>
</tbody>
</table>

- No high-grade pulmonary AEs, including pneumonitis, were observed

Hammers et al. JCO 32S; Abstr 4504, 2014
Nivolumab Next Steps

• Nivolumab is being compared with everolimus in a phase III trial for patients who progressed on VEGF targeted therapy with an overall survival endpoint

• A phase III trial is planned in the first-line setting for nivolumab plus ipilimumab versus sunitinib
Trials to Watch with Other Checkpoint Inhibitors

- A phase II trial is underway for MPDL3280A plus bevacizumab versus MPDL3280A monotherapy versus sunitinib in first line therapy for metastatic RCC (Genentech)

- Phase I trial of MK-3475 plus pazopanib (Merck/GSK) is underway and for MK-3475 plus axitinib (Merck/Pfizer) is planned
MPDL3280A (Anti-PDL1) Inhibits the Binding of PD-L1 to PD-1 and B7.1

• Blocking PD-L1 restores T-cell activity, resulting in tumor regression in preclinical models
• Binding to PD-L1 leaves PD-1/PD-L2 interaction intact and may enhance efficacy and safety
Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic urothelial bladder cancer (UBC)

Thomas Powles,1 Nicholas J. Vogelzang,2 Gregg Fine,3 Joseph Paul Eder,4 Fadi Braiteh,5 Yohann Loriot,6 Cristina Cruz,7 Joaquim Bellmunt,8 Howard Burris,9 Siew-leng Melinda Teng,3 Xiaodong Shen,3 Hartmut Koeppen,3 Priti S. Hegde,3 Daniel S. Chen,3 Daniel P. Petrylak4

1Barts Cancer Institute, Queen Mary University of London; 2University of Nevada School of Medicine and US Oncology/Comprehensive Cancer Centers of Nevada; 3Genentech, Inc.; 4Yale Cancer Center; 5Comprehensive Cancer Centers of Nevada; 6Gustave Roussy, University of Paris-Sud; 7Vall d’Hebron Institute of Oncology (VHIO) and Vall d’Hebron University Hospital; 8Bladder Cancer Center, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School; 9Sarah Cannon Research Institute
PD-L1 Prevalence in Solid Tumors

<table>
<thead>
<tr>
<th>Indication</th>
<th>PD-L1+ (IC)</th>
<th>PD-L1+ (TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC (n = 184)</td>
<td>26%</td>
<td>24%</td>
</tr>
<tr>
<td>UBC (n = 205)</td>
<td>27%</td>
<td>11%</td>
</tr>
<tr>
<td>RCC (n = 88)</td>
<td>25%</td>
<td>10%</td>
</tr>
<tr>
<td>Melanoma (n = 59)</td>
<td>36%</td>
<td>5%</td>
</tr>
<tr>
<td>HNSCC (n = 101)</td>
<td>28%</td>
<td>19%</td>
</tr>
<tr>
<td>Gastric cancer (n = 141)</td>
<td>18%</td>
<td>5%</td>
</tr>
<tr>
<td>CRC (n = 77)</td>
<td>35%</td>
<td>1%</td>
</tr>
<tr>
<td>Pancreatic cancer (n = 83)</td>
<td>12%</td>
<td>4%</td>
</tr>
</tbody>
</table>

ICs: tumor-infiltrating immune cells.
TCs: tumor cells.
PD-L1+ if ≥ 5% ICs or TCs were positive for PD-L1 staining (Genentech/Roche PD-L1 IHC).
MPDL3280A: Treatment-Related AEs

Safety-evaluable population with UBC in Phase I expansion

<table>
<thead>
<tr>
<th>Patients With UBC N = 68</th>
<th>All Grade n (%)</th>
<th>Grade 3-4(^a) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>39 (57%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>8 (12%)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8 (12%)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (12%)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>6 (9%)</td>
<td>0</td>
</tr>
<tr>
<td>Asthenia</td>
<td>5 (7%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Chills</td>
<td>3 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>Influenza-like illness</td>
<td>3 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>Lethargy</td>
<td>3 (4%)</td>
<td>0</td>
</tr>
</tbody>
</table>

- MPDL3280A was well tolerated in patients with UBC, including the elderly and patients with impaired renal function
- No treatment-related grade 4 or 5 AEs
- No investigator-assessed immune-related toxicities were reported as of the clinical cutoff

\(^a\) Additional treatment-related Grade 3/4 AEs: thrombocytopenia and decrease in blood phosphorus (1 each).
Clinical data cutoff was Jan 1, 2014.
Includes events occurring in ≥ 3 patients.
Patients with complete responses. Patients with a CR had < 100% reduction of the target lesions due to lymph node target lesions. All lymph nodes returned to normal size per RECIST v1.1.

IC; tumor-infiltrating immune cells.

Responses are investigator assessed, Best response is not known for 7 patients.

Diagnostic/(Dx) PD-L1 positive: IHC 3 (≥ 10% of ICs PD-L1+) and IHC 2 (≥ 5% but < 10% of ICs PD-L1+).

Diagnostic/(Dx) PD-L1 negative: IHC 1 (≥ 1% but < 5% ICs PD-L1+) and IHC 0 (<1% ICs PD-L1+).

Patients dosed by Nov 20, 2013 (≥ 6 wk follow-up) with measurable disease at baseline. Clinical data cutoff was Jan 1, 2014.
MPDL3280A: Tumor Burden Over Time in UBC

- Median duration of response has not been reached
 - 0.1+ to 30.3+ weeks IHC (IC) 2 or 3 and 0.1+ to 6.0+ weeks for IHC (IC) 0 or 1

Best response is not known for 7 patients.
Patients dosed by Nov 20, 2013 (≥ 6 wk follow-up) with measurable disease at baseline and at least 1 post-baseline measurement.
Clinical data cutoff was Jan 1, 2014.
MPDL3280A in urothelial carcinoma

- Low toxicity even in elderly patients
 - No grade 4-5 events
- High efficacy in PDL1 positive patients
 - Primarily related to infiltrating immune cells
- Activity in PDL1 negative patients similar to our standard salvage chemotherapies
- 94% of responders still responding at data cutoff
- Further development is ongoing
 - Large single arm phase II study recruiting at MSK and other centers
Genentech Randomized Phase II trial
Study Design

Study Schema

Randomize ~150 patients 1:1:1
Stratify:
- Prior Nephrectomy (y/n)
- PD-L1 Status (±)
- Motzer Criteria (low, intermediate, high risk)

Arm A
- MPDL3280A q3w (for 1 year) + Bevacizumab q3w (until PD)

Arm B
- MPDL3280A q3w (for 1 year)

Arm C
- Sunitinib 50 mg (4w-on & 2w-off; until PD)

PD = progressive disease; PD – L1 = programmed cell death–1 ligand 1; q3w = every 3 weeks.

a Mandatory biopsy at progressive disease to be eligible for crossover.