2012 GASCO Highlights GI Oncology

Michael Morse, M.D., M.H.S., F.A.C.P. Associate Professor, GI Oncology Duke University Medical Center

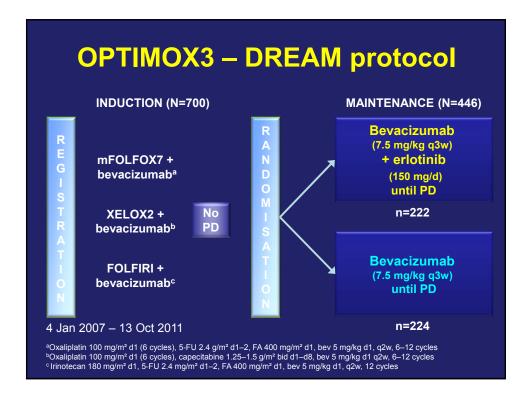
Conflict of interest disclosure

- Advisory board member and lectures for:
 - Roche/Genentech
 - Sanofi-Aventis
 - Pfizer
 - Amgen
 - Bayer
 - Onyx
 - Genomic Health

Role of maintenance therapy in CRC

- OPTIMOX1-2 studies validated oxaliplatin stop-and-go strategy¹⁻²
- ■MACRO trial showed bevacizumab was not inferior to XELOX + bevacizumab as maintenance therapy after XELOX-BEV primary therapy³
- 1. Tournigand C, et al. J Clin Oncol 2006;24:394-400
- 2. Chibaudel B, et al. J Clin Oncol 2009;27:5727-33
- 3. ASCO2010; Abstr 3501

Bevacizumab with or without erlotinib as maintenance therapy, following induction first-line chemotherapy plus bevacizumab, in patients with metastatic colorectal cancer:

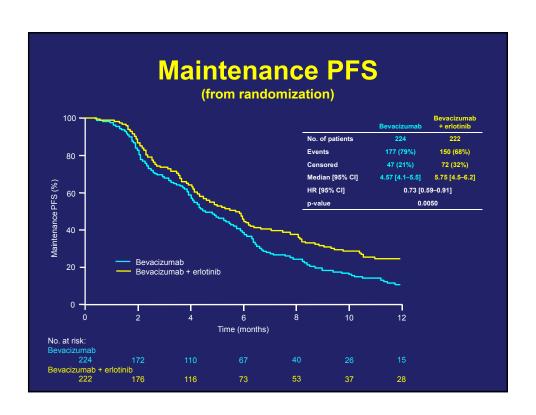

Efficacy and safety results of the international GERCOR DREAM phase III trial

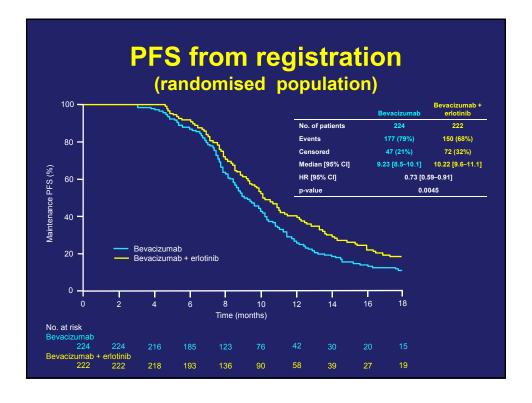
C. Tournigand, B. Samson, W. Scheithauer, G. Lledo, F. Viret, T. Andre, J.F. Ramée, N. Tubiana-Mathieu, J. Dauba, O. Dupuis, Y. Rinaldi, M. Mabro, N. Aucoin, A. Khalil, J. Latreille, C. Louvet, D. Brusquant, F. Bonnetain, B. Chibaudel, A. de Gramont

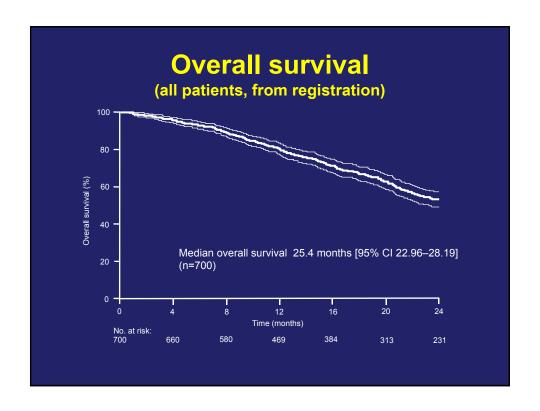
Rationale

- Crosstalk between EGFR pathway and VEGF is involved in tumour growth and survival
- Phase III studies in mCRC: combination of monoclonal antibodies targeting EGFR and VEGF provided no benefit^{1,2}
- In colorectal cancer xenografts, combining TKIs targeting VEGFR and EGFR shows synergistic antitumor activity, even in KRAS mutant model³
- Combination of bevacizumab and erlotinib has been tested in preclinical models⁴

1. Hecht JR, et al. J Clin Oncol 2009;27:672-80 2. Tol J, et al. N Engl J Med 2010;360:563-72 3. Poindessous V, et al. Clin Cancer Res 2011;17:6522-30 4. Naumov GN, et al. Clin Cancer Res 2009;15:3484-94


Inclusion criteria


- Histologically proven colorectal adenocarcinoma
- Measurable or evaluable metastasis
- Not suitable for complete surgical resection
- No prior chemotherapy or targeted agent for metastatic disease
- Age 18–80 years
- WHO performance status 0-2
- Alkaline phosphatase <3-5 × ULN
- Bilirubin <1.5 × ULN
- Adjuvant chemotherapy >6 months before diagnosis of metastasis (2 years if oxaliplatin)

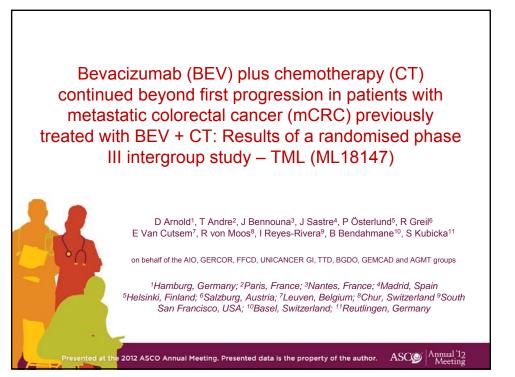

Endpoints

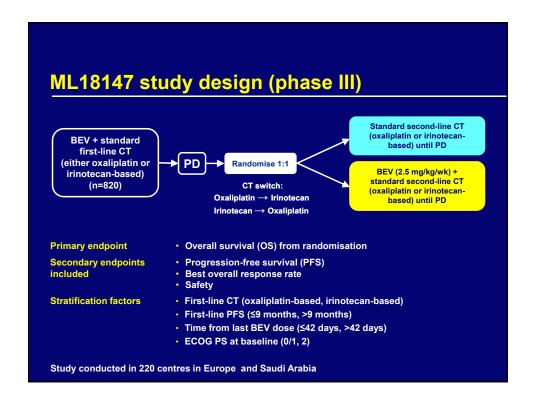
- Primary endpoint
 - Progression-free survival (PFS) on maintenance therapy
- Secondary endpoints
 - Overall survival
 - Overall survival from maintenance
 - Duration without chemotherapy
 - Response rate (RECIST)
 - Survival according to KRAS mutational status
- Sample size
 - Superiority study, power of 80%, 2-sided test α =0.05
 - Δ median maintenance PFS: from 4.5 months (bevacizumab) to 6.5 months (bevacizumab + erlotinib)
 - Anticipated drop-out rate 40% (withdrawn consent, premature discontinuation, metastasis surgery or progression/death)
 - 700 patients to be enrolled
 - 418 evaluable patients
 - 231 events required

Characteristic, % patients	Bevacizumab (N=224)	Bevacizumab + erlotinik (N=222)				
Age, <70 / ≥70	73 / 27	74 / 26				
Sex, male / female	56 / 44	66 / 34				
Colon / rectum / both	73 / 25 / 2	74 / 23 / 3				
Prior adjuvant chemotherapy	9	11				
Metachronous / synchronous disease	17 / 83	18 / 82				
PS, 0 / 1 / 2	60 / 37 / 4	60 / 36 / 4				
Chemotherapy regimen						
FOLFOX-bev	59	59				
XELOX-bev	30	30				
FOLFIRI-bev	10	10				
Platelet count, <400 / >400	71 / 29	74 / 26				
LDH, N / >ULN	47 / 53	49 / 51				
Alkaline phosphatase, N / >ULN	48 / 52	50 / 50				
CEA, N / >ULN	15 / 81	15 / 83				

Toxicity (1)							
Selected grade 3/4 AEsa, % Bevacizumab (n=219) Bevacizumab + erlotinik (n=218)							
Neutropenia	0	0					
Anaemia	0.5	0.9					
Thrombocytopenia	0	0.5					
Febrile neutropenia	0	0					
Nausea	0.5	0					
Vomiting	0	1.4					
Mucositis	0	0.5					
Hand-foot syndrome	0.5	0					
Venous thrombosis	0	0					
Proteinuria	0.5	0.9					
Hypertension	2.7	2.8					

	Bevacizumab (n=219)			Beva		b + erlo 218)	otinib	
Grade, %	1	2	3	4	1	2	3	4
Diarrhoea	11	1	1	0	29	20	9	0
Skin	8	0	0	0	28	37	19	1


Conclusions


- The addition of erlotinib to bevacizumab following induction therapy with bevacizumab-based chemotherapy significantly increases maintenance PFS
- The combination of bevacizumab and erlotinib is well tolerated, but with a substantial increase in diarrhoea and skin toxicity
- These results suggest that erlotinib may be active in patients with mCRC and provide a clinical rationale for double inhibition of VEGF and EGFR
- Overall survival and KRAS analyses are ongoing

Second line therapy: Where we were

- E3200 showed longer survival in the second line when BEV was added to FOLFOX in patients treated with 5FU/irinotecan and no BEV in first line¹
- BRITE/ARIES registry demonstrated longer survival in patients receiving BEV beyond progression^{2,3}
- Cetuximab added to irinotecan significantly improved PFS in patients with metastatic colorectal cancer (mCRC) previously treated with fluoropyrimidine and oxaliplatin⁴
- Panitumumab lengthens progression free survival when added to FOLFIRI in second line therapy⁵

1. JCO 2007;25:1539
 2. Grothey et al. J Clin Oncol 2008;26:5326–34
 3. Cohn et al. J Clin Oncol 2010;28(15s):Abstr 3596
 EPIC trial, JCO 2008;26:2311
 5. ASCO2010; 3565

Main eligibility criteria

Inclusion

- Patients ≥18 years with histologically confirmed diagnosis of mCRC
- Eastern Cooperative Oncology Group (ECOG) PS 0-2
- PD (≥1 measurable lesion according to RECIST v1 assessed by investigator, documented by CT or MRI), ≤4 weeks prior to start of study treatment
- Previously treated with BEV plus standard first-line CT, not candidates for primary metastasectomy

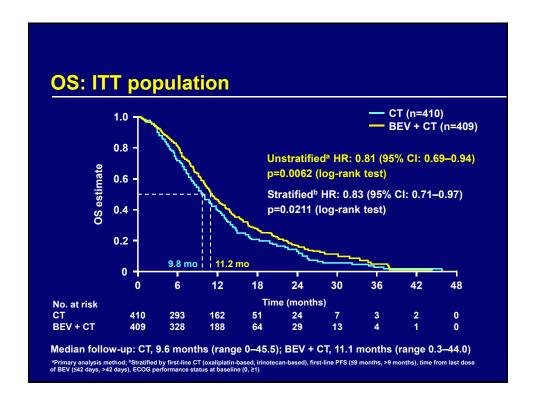
Exclusion

- Diagnosis of PD >3 months after last BEV administration
- First-line patients with PFS in first-line of <3 months
- Patients receiving <3 consecutive months of BEV in first-line

Demographic and baseline characteristics: Randomised patients

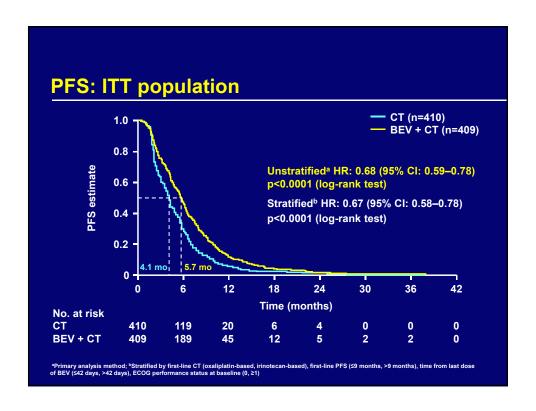
Characteristic	CT (n=411)	BEV + CT (n=409)	
Male, %	63	65	
Age, median years	63	63	
ECOG performance status, %			
0	43	44	
1	52	51	
2	5	5	
First-line PFS, %			
≤9 months	56	54	
>9 months	44	46	
First-line CT, %			
Irinotecan-based	58	59	
Oxaliplatin-based	42	41	

Patients were accrued between February 2006 and June 2010


Demographic and baseline characteristics: Randomised patients (cont'd)

Characteristic	CT (n=411)	BEV + CT (n=409)	
Duration from last BEV dose to randomisation, %			
≤42 days	77	77	
>42 days	23	23	
Patient population ^a , %			
AIO	32	32	
ML18147	68	68	
Liver metastasis only, %			
No	71	73	
Yes	29	27	
No. of organs with metastasis, %			
1	39	36	
>1	61	64	

^aPatient population refers to sequential enrolment of patients in original AIO study and subsequent enrolment in ML18147 when study was transferred to Roche


Second-line chemotherapy during study: Randomised patients

Second-line CT regimen, %	CT (n=407)	BEV + CT (n=407)
Irinotecan-based CT	43	42
FOLFIRI	14	16
LV5FU2 + CPT11 (Douillard regimen¹)	7	7
Capecitabine / irinotecan	12	12
Other regimens	10	7
Oxaliplatin-based CT	57	58
FOLFOX4 / mFOLFOX4	18	19
FOLFOX6	13	16
FUFOX	9	6
Capecitabine / oxaliplatin	11	14
Other regimens	6	4

Subsequent therapy, %	CT (n=409)	BEV + CT (n=401)
atients who received ≥1 ubsequent anti-cancer therapy	67.7	68.6
ubsequent anti-cancer therapies		
BEV	12.2	11.5
Anti-EGFR	41.3	39.2
Other	50.4	54.9

Subaroun :	analveie	of (OS: ITT popu	ilatio	1
oubgroup t	ariary 515	<u> </u>	oo. III popt	aratio:	
Category	Subgroup	n		HR	(95% CI)
All	All	819	⊢• -1	0.81	(0.69-0.94)
Patient population ^a	AIO	260		0.86	(0.67-1.11)
	ML18147	559	⊢	0.78	(0.64-0.94)
Gender	Female	294		0.99	(0.77-1.28)
	Male	525	⊢ 1	0.73	(0.60-0.88)
Age	<65 years	458	⊢	0.79	(0.65-0.98)
	≥65 years	361	<u> </u>	0.83	(0.66-1.04)
ECOG performance status	0	357	<u>⊷</u> -1	0.74	(0.59-0.94)
	≥1	458	⊢ -4	0.87	(0.71-1.06)
First-line PFS	≤9 months	449	<u>↓</u>	0.89	(0.73-1.09)
	>9 months	369	 !	0.73	(0.58-0.92)
First-line CT	Oxaliplatin-based	343		0.79	(0.62-1.00)
	Irinotecan-based	476	⊢ -	0.82	(0.67-1.00)
Time from last BEV	≤42 days	630	⊢	0.82	(0.69-0.97)
	>42 days	189		0.76	(0.55-1.06)
Liver metastasis only	No	592	⊢	0.81	(0.67-0.97)
	Yes	226		0.79	(0.59-1.05)
No. of organs	1	307	 -	0.83	(0.64-1.08)
with metastasis	>1	511	⊢• —•	0.77	(0.64-0.94)
		HR	1	2	

Best overall response:	Measurable disease
population	

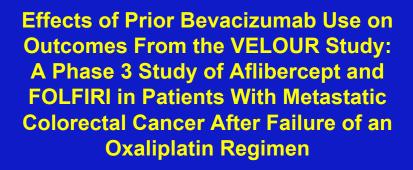
Outcome	CT (n=406)	BEV + CT (n=404)
Responders ^a , n (%)	16 (3.9)	22 (5.4)
p-value (unstratified)	0	.3113
p-value (stratified)	0	.4315
Complete response, n (%)	2 (<1)	1 (<1)
Partial response, n (%)	14 (3)	21 (5)
Stable disease, n (%)	204 (50)	253 (63)
Disease control rate, n (%)	220 (54)	275 (68)
p-value ^b	<(0.0001
PD, n (%)	142 (35)	87 (22)
Missing ^c , n (%)	44 (11)	42 (10)

^aPatients with a best overall response of confirmed complete or partial response ^bThis analysis was not prespecified ^cIncludes 'not-evaluable' or 'no tumour assessment' following baseline visit

Grade 3–5 adverse events (incidence ≥2%) in any arm: Safety population

	СТ	BEV + CT
Adverse event, %	(n=409)	(n=401)
Neutropenia	13	16
Leukopenia	3	4
Diarrhoea	8	10
Vomiting	3	4
Nausea	3	3
Abdominal pain	3	4
Subileus	<1	2
Asthenia	4	6
Fatigue	2	4
Mucosal inflammation	1	3
Dyspnoea	3	2
Pulmonary embolism	2	3
Polyneuropathy	2	3
Neuropathy peripheral	2	1
Hypokalaemia	2	2
Decreased appetite	2	1

Adverse events of special interest to BEV: Safety population

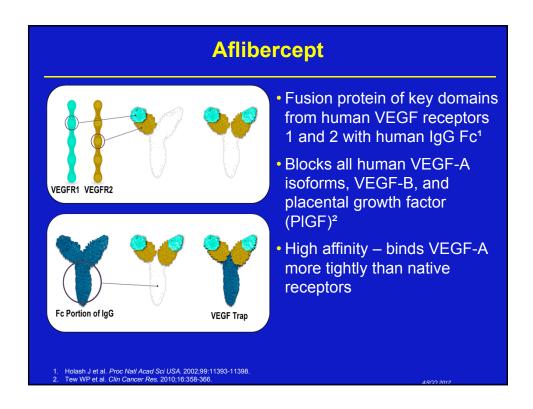

	CT (n=409)		BEV + CT (n=401)		
Patients, %	All grades	Grade 3-5	All grades	Grade 3-5	
AEs of special interest to BEV	21	6	41	12	
Hypertension	7	1	12	2	
Proteinuria	1	-	5	<1	
Bleeding/haemorrhage	9	<1	26	2	
Abscesses and fistulae	-	-	1	<1	
GI perforation	<1	<1	3	2	
Congestive heart failure	<1	<1	<1	_	
VTE	4	3	6	5	
ATE	1	<1	<1	<1	
Wound-healing complications	<1	<1	1	<1	
RPLS	_	_	_	_	

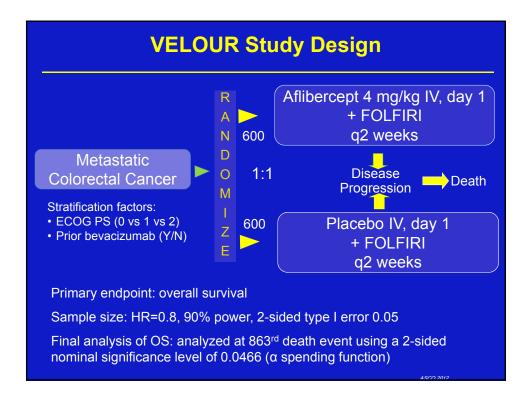
ATE: arterial thromboembolic events; GI: gastrointestinal; RPLS: reverse posterior leukoencephalopathy syndrome; VTE: venous thromboembolic events

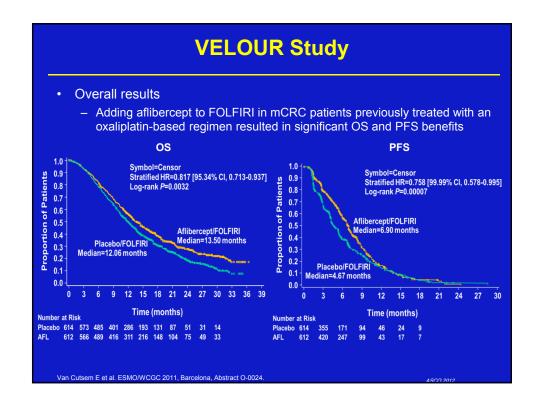
Summary

- BEV + standard second-line CT, crossed over from BEV + standard first-line CT, significantly prolongs OS and PFS
 - os
 - Median: BEV + CT 11.2 months, CT 9.8 months
 - HR: 0.81 (95% CI: 0.69-0.94), p=0.0062a
 - PFS
 - Median: BEV + CT 5.7 months, CT 4.1 months
 - HR: 0.68 (95% CI: 0.59-0.78), p≤0.0001a
- Findings from subgroup analyses for OS generally consistent with overall population
 - Treatment effect according to gender appeared to be different; treatmentgender interaction test was not statistically significant
- Differences in best overall response rate not statistically significant; low response rate in both treatment groups
- AEs not increased when continuing BEV beyond PD; AE profile consistent with previous findings

^aUnstratified log-rank test




Carmen Allegra,*

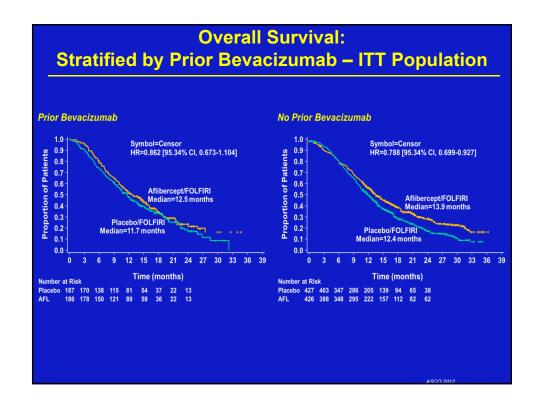

Josep Tabernero, Radek Lakomy, Jana Prausova, Paul Ruff, Guy Van Hazel, Vladimir M. Moiseyenko, David R. Ferry, Joe McKendrick, Eric Van Cutsem

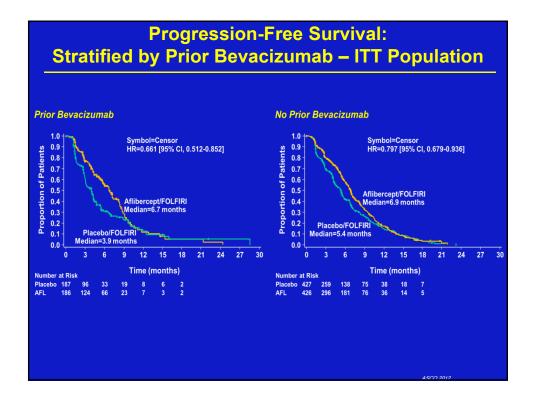
*University of Florida, Gainesville, FL

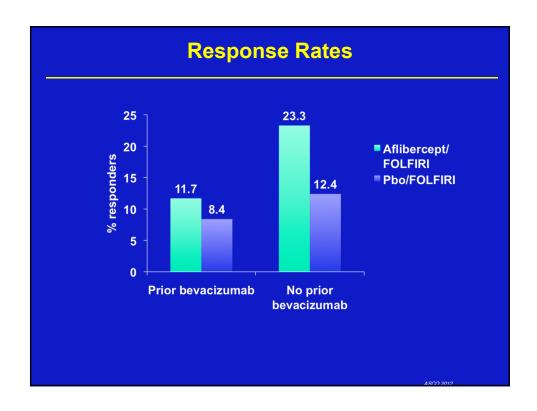
4800 201

Introduction

- The pivotal Phase 3 trial of 2L bevacizumab plus FOLFOX4 for previously treated mCRC showed a significant survival benefit compared with FOLFOX4 alone¹
 - Median OS: 12.9 vs 10.8 months, HR=0.75, P=0.0011
 - Median PFS: 7.3 vs 4.7 months, HR=0.61, P<0.0001
- The goal of the current analysis is to assess consistency of the effect of aflibercept on OS and PFS by prior bevacizumab use in a pre-specified analysis


1. Giantonio BJ et al. *J Clin Oncol.* 2007;25:1539-1544.


4800 201


Patient Demographics: Prior Bevacizumab

	Prior Bev	vacizumab 💮 💮	No Prior Bevacizumab		
Parameter	Placebo/ FOLFIRI (n=187)	Aflibercept/ FOLFIRI (n=186)	Placebo/ FOLFIRI (n=427)	Aflibercept/ FOLFIRI (n=426)	
ECOG PS, %					
0	57	58	57	57	
1	40	40	41	41	
Male, %	56	59	58	60	
Age, y, median (range)	60 (27-86)	59 (32-81)	61 (19-84)	61 (21-82)	
Region, %					
Europe	56	54	58	63	
North America	28	26	5	3	
Other countries	16	19	37	34	
>1 metastatic organ, %	54	57	56	59	
Duration of bevacizumab use, months, median (range)	6 (0-28)	6 (0-29)	-	-	
Antiangiogenic-free period, months, median (range)	2 (1-21)	2 (1-33)	-	-	

	Prior	Bevacizumab		No Prio	r Bevacizumab	
	Placebo/ FOLFIRI (n=187)	Aflibercept/ FOLFIRI (n=186)	Δ	Placebo/ FOLFIRI (n=427)	Aflibercept/ FOLFIRI (n=426)	Δ
OS (months) (95.34% CI)	11.7 (9.8-13.8)	12.5 (10.8-15.5)	0.8	12.4 (11.2-13.5)	13.9 (12.7-15.6)	1.5
PFS (months) (99.99% CI)	3.9 (2.9-5.4)	6.7 (4.8-8.7)	2.8	5.4 (4.2-6.7)	6.9 (5.8-8.2)	1.5
bevaciz	ion betwee umab" fac vel (<i>P</i> =0.57	tor was no	t sign	ificant at t		

	Prior Bev	/acizumab	No Prior B	evacizumab
Safety Population % of Patients	Placebo/ FOLFIRI (n=172)	Aflibercept/ FOLFIRI (n=171)	Placebo/ FOLFIRI (n=433)	Aflibercep FOLFIRI (n=440)
Grouped Term, PT	Grade 3/4	Grade 3/4	Grade 3/4	Grade 3/4
Proteinuria	0.6	9.4	1.4	7.3
Hypertension	0.6	16.4	1.8	20.5
Hemorrhage	1.2	3.5	1.8	2.7
GI origin	0.6	3.5	1.2	1.4
Headache (PT)	0	0.6	0.5	2.0
Venous thromboembolic event	5.8	7.0	6.5	8.2
Pulmonary embolism	2.9	2.3	3.7	5.5
Arterial thromboembolic event	0.6	1.8	0.5	1.8
GI perforation	0	0	0.5	0.7

afety Population, 6 of Patients	Placebo/ FOLFIRI (n=172)	Aflibercept/ FOLFIRI (n=171)	Placebo/ FOLFIRI (n=433)	Aflibercept/ FOLFIRI (n=440)
erious AEs	32	52	33	47
ny AE leading to death	6	6	4	6
Grade 3/4 AEs in >10% of atients in any treatment group				
Neutropenia	13	20	25	27
Diarrhea	9	19	7	20
Asthenic conditions	9	16	11	17
Infections and infestations	8	14	7	12
Stomatitis	4	11	5	14

Conclusions

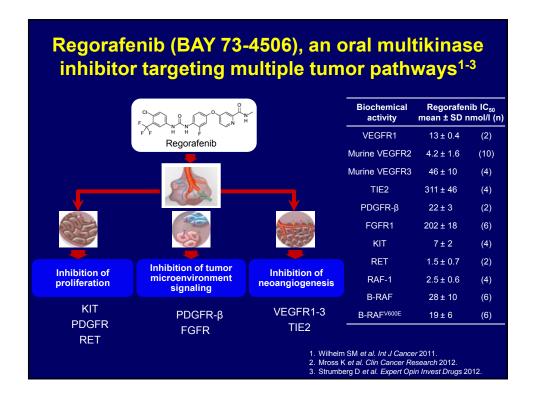
- This preplanned subgroup analysis demonstrates consistent trends of increased OS and PFS with aflibercept regardless of prior treatment with bevacizumab
- Prior treatment with bevacizumab does not appear to impact the safety profile of aflibercept
- Although analysis of a pre-specified subgroup, this study was not powered to show a treatment difference between arms, therefore no definitive conclusions may be drawn concerning the benefit of aflibercept in the prior bevacizumab-treated subgroup

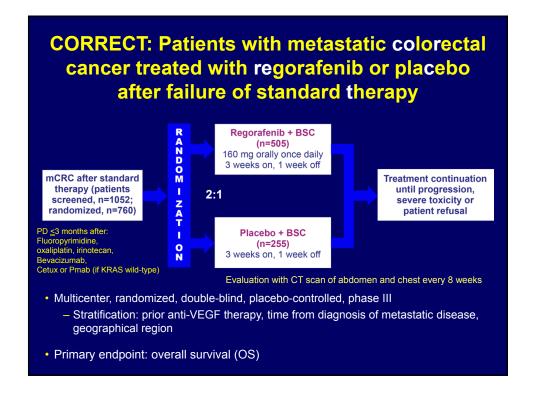
4SCO 2012

Refractory Metastatic CRC: a major problem

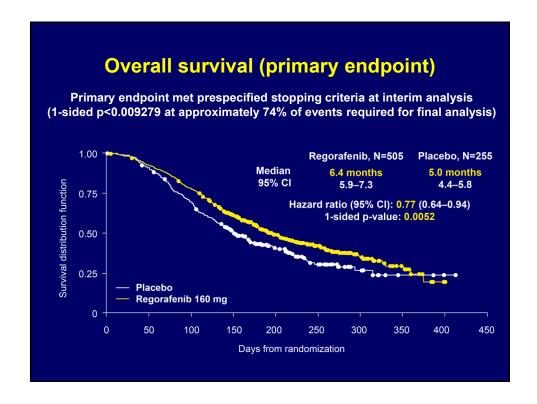
- Need for new therapies after failure of fluoropyrimidine, oxaliplatin, irinotecan, bevacizumab, and cetuximab
- No standard salvage therapy available, although many patients retain good performance status¹

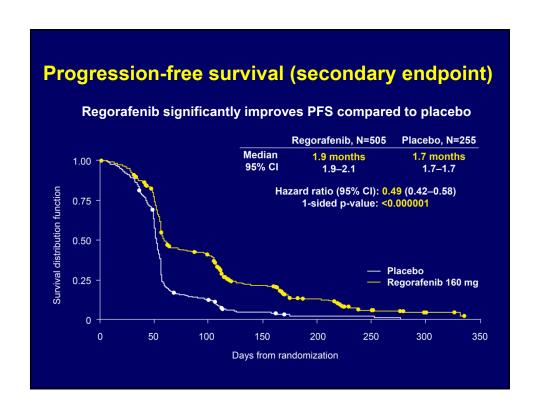
1. NCCN Guidelines. Colon cancer. v.2.2012.


Phase III CORRECT trial of regorafenib in metastatic colorectal cancer (mCRC)

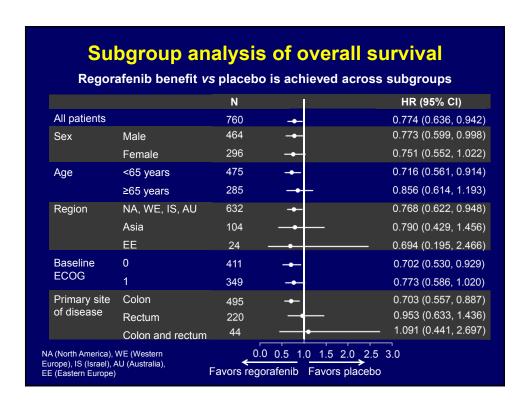


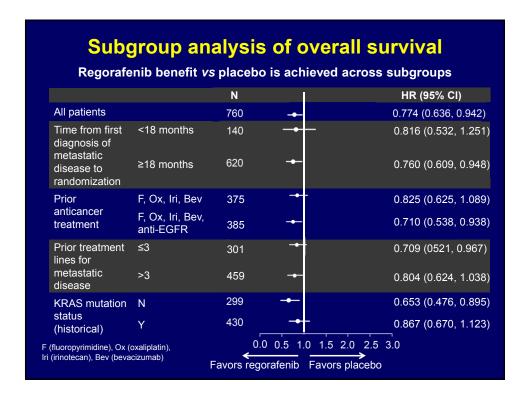
Eric Van Cutsem, MD, PhD University Hospitals Gasthuisberg/Leuven, Leuven, Belgium


On behalf of:


Alberto Sobrero, Salvatore Siena, Alfredo Falcone, Marc Ychou, Yves Humblet, Olivier Bouché, Laurent Mineur, Carlo Barone, Antoine Adenis, Josep Tabernero, Takayuki Yoshino, Heinz-Josef Lenz, Richard Goldberg, Daniel J. Sargent, Frank Cihon, Andrea Wagner, Dirk Laurent, Axel Grothey

		Regorafenib N=505	Placebo N=255
	Colon	64.0	67.5
Primary site of disease, %	Rectum	29.9	27.1
uisease, /i	Colon and rectum	5.9	5.5
	No	40.6	36.9
KRAS mutation, %*	Yes	54.1	61.6
	Unknown	5.3	1.6
	Adenocarcinoma	98.0	97.3
Histology, %	Other (adenosquamous or unspecified carcinoma)	2.0	2.8
Number of prior lines	1-2	26.7	24.7
of therapy for	3	24.8	28.2
metastatic disease, %	≥4	48.5	47.1
Prior bevacizumab, %		100	100




Overall response and disease control rates (secondary endpoints)

Regorafenib significantly improves DCR compared to placebo

Best response, %	Regorafenib N=505	Placebo N=255
Complete response	0	0
PR	1.0	0.4
SD	42.8	14.5
Progressive disease	49.5	80.0
DCR*	41.0	14.9

*DCR = PR + SD (≥6 weeks after randomization); p<0.000001

Regorafenib benefit vs placebo is achieved across subgroups					
Shawa	N	Hazard ratio (r	egorafenib/placebo)		
Subgroup	N	Estimate	95% CI		
All patients	760	0.494	0.419-0.582		
Age					
< 65 years	475	0.418	0.340-0.514		
≥ 65 years	285	0.651	0.496-0.855		
Region					
NA, WE, IS, AU	632	0.500	0.418-0.599		
Asia	104	0.433	0.277-0.679		
Eastern Europe	24	0.576	0.199-1.664		
Primary site of disease					
Colon	495	0.550	0.450-0.671		
Rectum	220	0.454	0.332-0.620		
Colon and rectum	44	0.348	0.163-0.745		
Prior line of Tx					
≤ 3	301	0.523	0.404-0.676		
>3	459	0.478	0.387-0.592		
KRAS mutation					
N	299	0.475	0.362-0.623		
Ÿ	430	0.525	0.425-0.649		

KRAS subgroup analysis

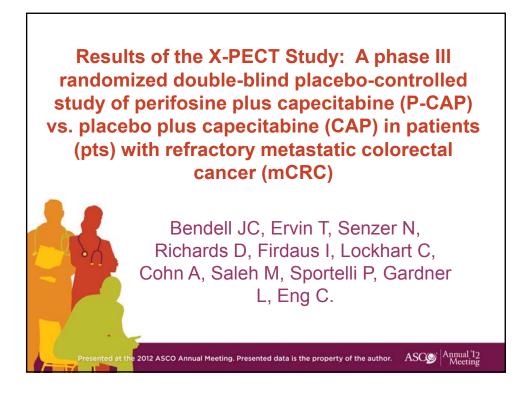
		Regorafenib	Placebo	HR (95% CI)
		N=505	N=255	HR (95% CI)
KRAS mutation, %	No	40.6	36.9	NA
	Yes	54.1	61.6	NA
Median OS, months	KRAS wild-type	7.3	5.0	0.653 (0.476-0.895)
	KRAS mutant	6.2	5.1	0.867 (0.670-1.123)
Median PFS, months	KRAS wild-type	2.0	1.8	0.475 (0.362-0.623)
	KRAS mutant	1.9	1.7	0.525 (0.425-0.649)

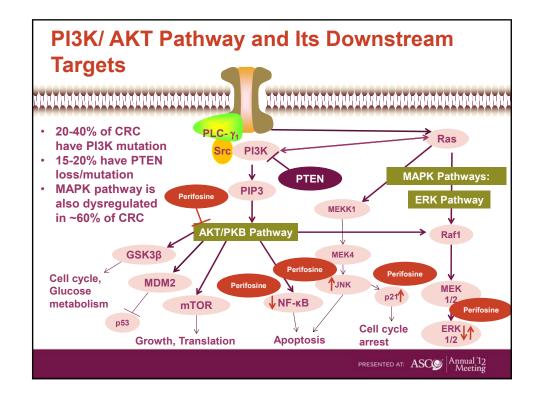
- Regorafenib shows OS and PFS benefit in both KRAS-wild-type and KRAS-mutant subgroups
- KRAS mutational status was not prognostic nor predictive in the study population

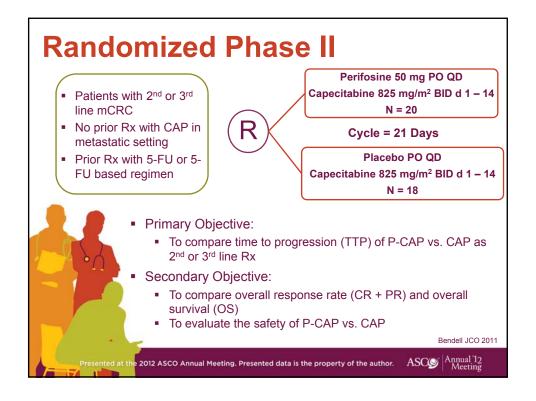
Drug-related treatment-emergent adverse events occurring in ≥10% of patients

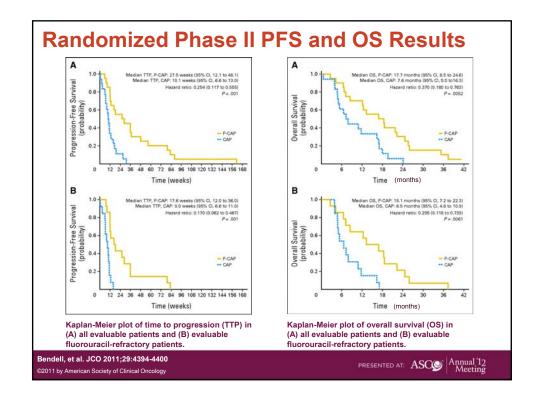
Advance 2000 6 0/	Regorafenib N=500					ebo 253		
Adverse event, %	All grades	Grade 3	Grade 4	Grade 5*	All grades	Grade 3	Grade 4	Grade 5*
Hand-foot skin reaction	46.6	16.6	0	0	7.5	0.4	0	0
Fatigue	47.4	9.2	0.4	0	28.1	4.7	0.4	0
Hypertension	27.8	7.2	0	0	5.9	8.0	0	0
Diarrhea	33.8	7.0	0.2	0	8.3	8.0	0	0
Rash / desquamation	26.0	5.8	0	0	4.0	0	0	0
Anorexia	30.4	3.2	0	0	15.4	2.8	0	0
Mucositis, oral	27.2	3.0	0	0	3.6	0	0	0
Thrombocytopenia	12.6	2.6	0.2	0	2.0	0.4	0	0
Fever	10.4	8.0	0	0	2.8	0	0	0
Nausea	14.4	0.4	0	0	11.1	0	0	0
Bleeding	11.4	0.4	0	0.4	2.8	0	0	0
Voice changes	29.4	0.2	0	0	5.5	0	0	0
Weight loss	13.8	0	0	0	2.4	0	0	0

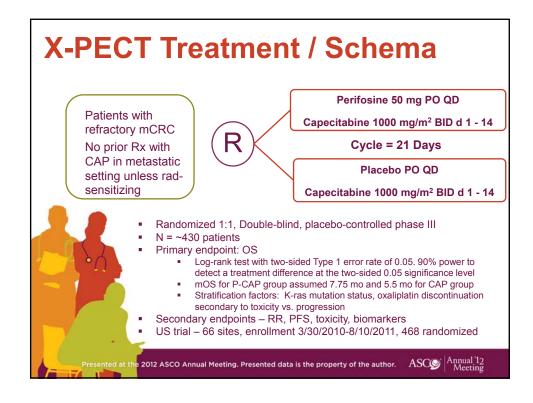
Health-related QoL analyses: time-adjusted area under the curve


No significant difference in health-related QoL with regorafenib vs placebo


	Treatment group	Least-squares mean	(95% CI)
EORTC QLQ-C30	Placebo	58.13	(55.72, 60.53)
	Regorafenib	56.93	(54.79, 59.08)
EQ-5D index	Placebo	0.67	(0.64, 0.70)
	Regorafenib	0.67	(0.64, 0.70)
EQ-5D VAS	Placebo	61.84	(59.59, 64.09)
	Regorafenib	60.62	(58.62, 62.63)


VAS, visual analog scale


Summary of CORRECT results


- The study met its primary endpoint at the preplanned interim analysis
- Regorafenib *vs* placebo:
 - OS: 6.4 vs 5.0 months, HR=0.77, p=0.0052
 - Crossed prespecified boundary (1-sided p<0.009279)
 - PFS: 1.9 vs 1.7 months, HR=0.49, p<0.000001
 - DCR (PR + SD): 41.0% *v*s 14.9%, p<0.000001
- Subgroup analyses:
 - Regorafenib showed OS and PFS benefit across prespecified subgroups
 - Efficacy of regorafenib was independent of KRAS mutation status
- No new or unexpected safety findings:
 - Most frequent grade 3 events related to regorafenib were hand–foot skin reaction, fatigue, diarrhea, hypertension and rash

Key eligibility criteria

- Histologically (or cytologically) confirmed adenocarcinoma of the colon or rectum that is recurrent or metastatic
- Patients must have failed available therapy for the treatment of advanced colorectal cancer.
 - Progressive disease during or within 6 months after fluoropyrimidine, irinotecan, oxaliplatin, bevacizumab, and for K-ras wild-type (WT) patients, anti-EGFR antibody (cetuximab/panitumumab) containing therapies, with most recent progression by RECIST criteria.
 - For oxaliplatin-based therapy, failure of therapy will also include patients who progressed within 12 months of adjuvant therapy and patients who had oxaliplatin stopped secondary to toxicity
- No previous capecitabine in the metastatic setting (except radiosensitizing)
- ECOG 0-1, age ≥ 18 years, adequate bone marrow, renal, and hepatic function

PRESENTED AT: ASCO Annual 12 Meeting

Baseline Disease Characteristics				
	Placebo	(N=234)	Perifosin	e (N=234)
	n	%	n	%
K-Ras Mutation Status				
Mutant	118	50.4	120	51.3
Wild Type	116	49.6	114	48.7
Diagnosis				
Colon Cancer	184	78.6	178	76.1
Rectal Cancer	50	21.4	56	23.9
Median Prior Therapy Regimens				
2	2	0.9	2	0.9
3	60	25.6	64	27.4
≥4	172	73.5	168	71.7
Prior Adjuvant Therapy				
Yes	40	17.1	43	18.4
No	194	82.9	191	81.6
Strata				
Oxaliplatin discontinuation secondary to progression	155	66.2	141	60.3
Oxaliplatin discontinuation secondary to toxicity	79	33.8	93	39.7
		PRESE	ENTED AT: ASC	Annual 12 Meeting

	Placebo (N=234)	Perifosine (N=234)
Overall		
No. of Patients	234	234
No. of Events	178 (76.07%)	187 (79.91%)
Median OS (95% CI) (mos)	6.9 (5.9 , 7.4)	6.4 (5.1 , 6.9)
HR (95% CI) (Relative to Placebo)		1.111 (0.905 , 1.365)
P-value (Log-rank)		0.315
K-Ras Wild Type		
No. of Patients	116	114
Median OS (95% CI) (mos)	6.8 (5.1 , 7.7)	6.6 (5.1 , 7.9)
HR (95% CI) (Relative to Placebo)		1.020 (0.763 , 1.365)
P-value (Log-rank)		0.894
K-Ras Mutant		
No. of Patients	118	120
Median OS (95% CI) (mos)	6.9 (5.6 , 8.0)	5.4 (4.7, 6.8)
HR (95% CI) (Relative to Placebo)		1.192 (0.890 , 1.596)
P-value (Log-rank)		0.238

	Placebo (N=234)	Perifosine (N=234)
<u>Overall</u>		
No. of Patients	234	234
No. of Events	215 (91.88%)	223 (95.30%)
Median PFS Time (95% CI) (wks)	11.4 (7.7 , 12.1)	10.9 (8 , 12)
HR (95% CI) (Relative to Placebo)		1.031 (0.854 , 1.244)
P-value (Log-rank)		0.752
K-Ras Wild Type		
No. of Patients	116	114
Median PFS Time (95% CI) (wks)	9.4 (6.4 , 12)	11.1 (7.3 , 12.3)
HR (95% CI) (Relative to Placebo)		0.883 (0.677 , 1.153)
P-value (Log-rank)		0.362
K-Ras Mutant		
No. of Patients	118	120
Median PFS Time (95% CI) (wks)	11.8 (7.7 , 12.4)	10.6 (6.6 , 12.7)
HR (95% CI) (Relative to Placebo)		1.167 (0.895 , 1.523)
P-value (Log-rank)		0.254

Non- Hematologic	Grade 1/2				Grade 3/4			
	Placebo		Perifosine		Placebo		Perifosine	
	n	%	n	%	n	%	n	%
Anemia	30	12.9	49	21.0	7	3.0	5	2.1
Neutropenia	4	1.7	3	1.3	2	0.9	1	0.4
Thrombocytopenia	3	1.3	5	2.1	0	0.0	1	0.4
Fatigue	95	40.6	125	53.4	1	0.4	3	1.3
Nausea	72	30.8	91	38.9	5	2.1	10	4.3
Diarrhea	71	30.3	94	40.2	14	6.0	14	6.0
Decreased Appetite	49	20.9	63	26.9	1	0.4	6	2.6
Vomiting	45	19.2	62	26.5	7	3.0	8	3.4
Palmar-plantar	42	17.9	49	20.9	15	6.4	10	4.3
Stomatitis	18	7.7	14	6.0	2	0.9	2	0.9
Hyperglycemia	12	5.1	7	3.0	4	1.7	1	0.4

Subgroup – Kras WT and oxaliplatin discontinuation secondary to toxicity

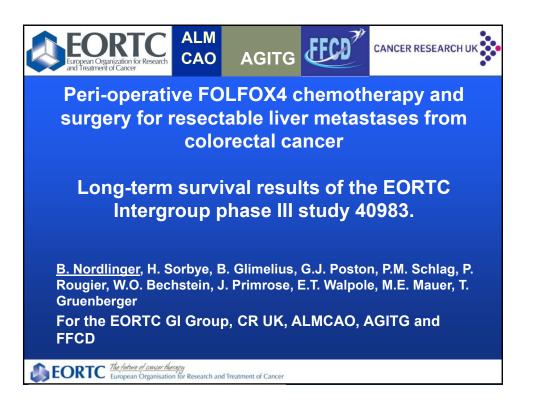
	Placebo	Perifosine					
Progression Free Survival							
No. of Patients	40	46					
Median PFS Time (95% CI) (wks)	6.6 (6.1 , 12.4)	18.1 (11.6 , 22.1)					
HR (95% CI) (Relative to Placebo)		0.514 (0.329 , 0.801)					
P-value (Log-rank)		0.003					
Overall Survival							
No. of Patients	40	46					
Median OS Time (95% CI) (mos)	6.2 (4.1 , 7.9)	8 (6.4 , 10.6)					
HR (95% CI) (Relative to Placebo)		0.769 (0.477 , 1.239)					
P-value (Log-rank)		0.280					

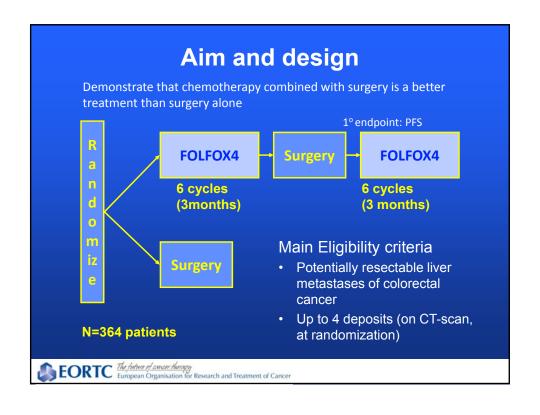
When oxaliplatin is stopped secondary to toxicity rather than resistance, are these cells different? How does this interact with Kras? Biomarker studies pending

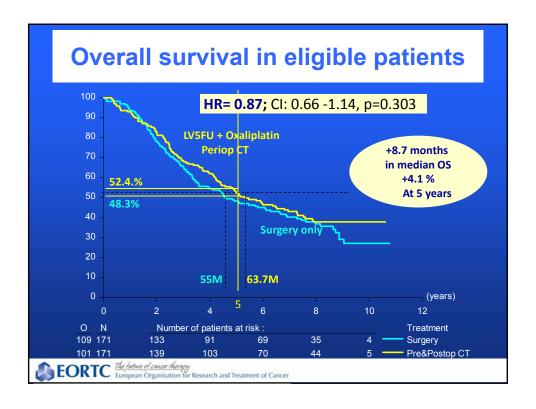
PRESENTED BY:

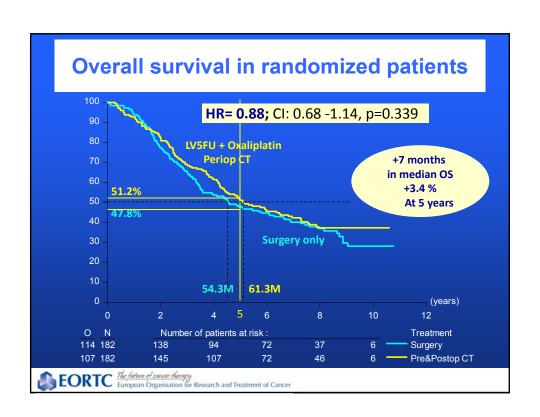
PRESENTED AT: ASCO Annual 12
Meeting

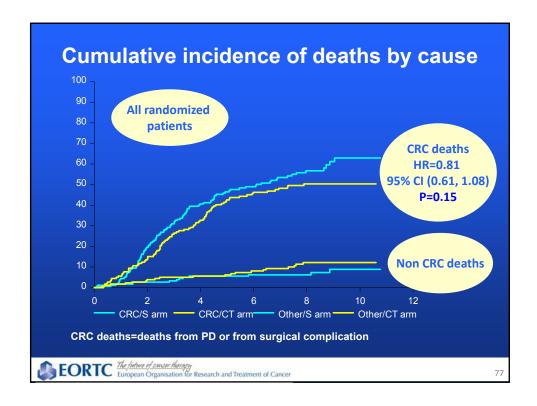
Conclusions

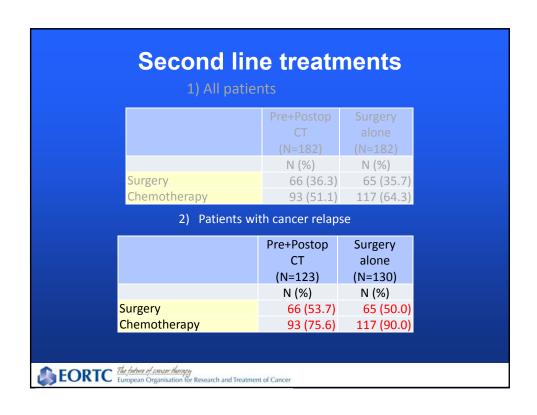

- Despite promising data from a small randomized phase II study, the addition of perifosine to capecitabine for patients with refractory colorectal cancer did not show a benefit
 - Differences between the treatment groups between the phase II and III - ? less pretreatment
 - There was no significant difference in toxicity profiles between the two arms
- Biomarker studies are pending to evaluate if any subgroups may have received benefit
 - Is there a real signal in the patients who stopped oxaliplatin secondary to toxicity and who are also Kras WT?
 - Refractory colorectal cancer cells are different
- As we continue to search for new agents in the treatment of colorectal cancer, biomarker analyses are a necessity to help us understand what we are doing


PRESENTED AT: ASCO Annual 12


Perioperative chemotherapy for resected hepatic metastases


Peri-operative adjuvant therapy for resected mets: Where we were


- Pooled analysis of 2 studies of post-op 5FU/LV: marginally significant benefit in PFS and OS (JCO 2008;26:4906)
- Post-op CAPOX + Bev vs CAPOX closed for slow accrual (ASCO2011;3565): 2Y DFS: 52 vs 70% (p=0.074).
- HAI with FUDR: MS: 68 vs 59 mo (P=NS); DFS: 31 vs 17 mo (p<0.03); (NEJM 1999;341:2039; ASCO GI 2005;#184)
- EORTC 40983 [EPOC]: FOLFOX pre- and post resection vs surgery (Lancet 2008;371:1007): 3Y PFS 35 vs 28%



Conclusion

No sufficient evidence to be standard treatment

Peri-operative chemotherapy with FOLFOX4 improves PFS which was the primary endpoint

This trial failed to demonstrate an improvement in OS, for which it was not powered

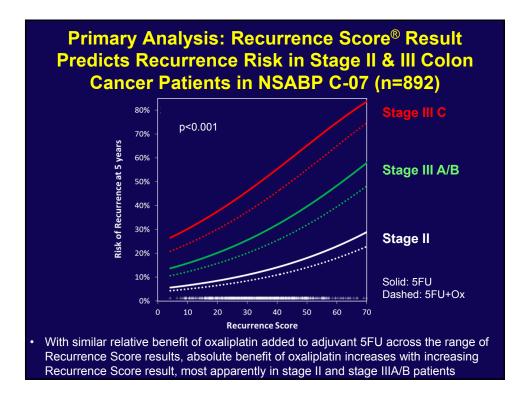
- Observed HR is quite similar for PFS and for CRC deaths (HR=0.8). More deaths not related to cancer in CT arm
- Observed absolute increase in OS of 4% is similar to positive trials in CRC (ex.: Mosaic: + 4.2% OS at 6 years)
- Higher than anticipated survival rates in the control arm,

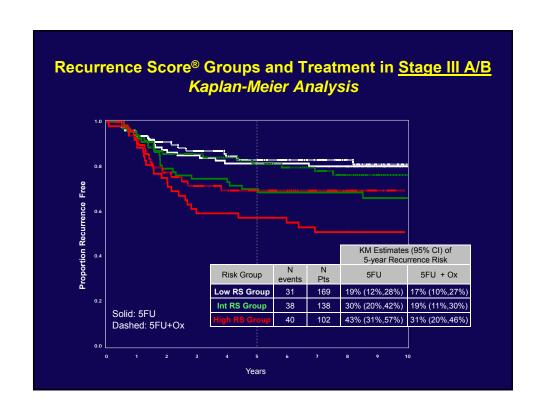
Validation of the 12-gene colon cancer Recurrence Score® result in NSABP C-07 as a predictor of recurrence in stage II and III colon cancer patients treated with 5FU/LV (5FU) and 5FU/LV + oxaliplatin (5FU+Ox)

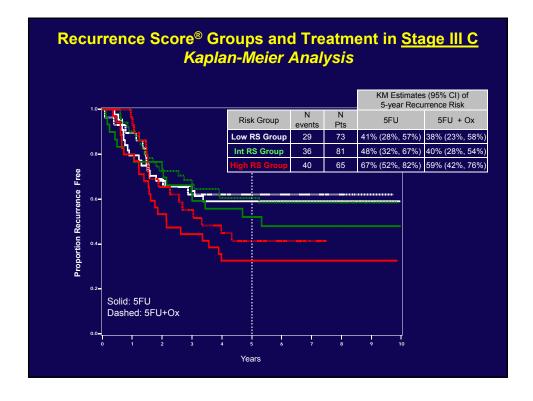
O'Connell MJ,¹ Lee M,² Lopatin M,² Yothers G,¹ Clark-Langone K,² Millward C,² Paik S,¹ Sharif S,¹ Shak S,² Wolmark N¹

¹National Surgical Adjuvant Breast and Bowel Project, Pittsburgh, PA; ²Genomic Health, Inc., Redwood City, CA

Study Objectives


Prospectively-designed study using archived tissue with pre-specified endpoints, analytical methods and analysis plan (a "Prospective-Retrospective" study¹)


- Primary Objective:
 - Determine whether there is a significant relationship between the continuous 12-gene Recurrence Score® value and recurrence risk in stage II/III patients treated with 5FU or 5FU+oxaliplatin
- · Secondary Objectives
 - Determine whether the Recurrence Score result provides significant information beyond number of nodes examined, pathologic T-stage, tumor grade and MMR status
 - Compare recurrence risk between high and low Recurrence Score groups defined using pre-specified cut-points

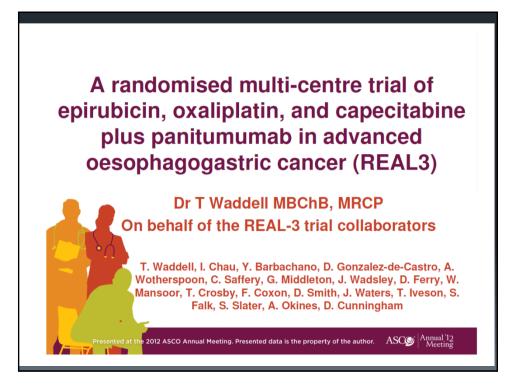

1. Simon et al. J Natl Cancer Inst. 2009.

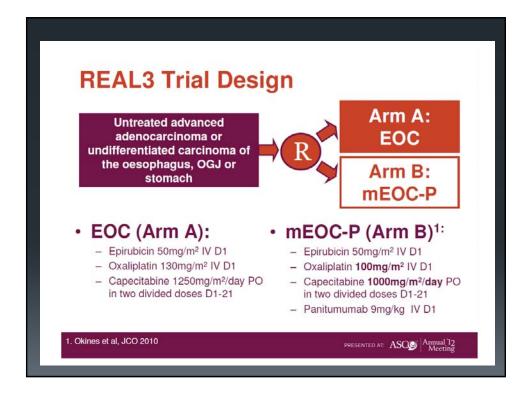
Quantitative Gene Expression Analysis

- Standardized Oncotype DX[®] Colon Cancer Assay performed using RT-PCR from 25 µm of manually microdissected, fixed, paraffin embedded primary colon cancer tissue
 - Expression of seven cancer-related genes and five reference genes analyzed by TaqMan assays
 - RT-PCR performed in triplicate qPCR wells (2 ng RNA input per 10 µL-reaction)
- The 12-gene Recurrence Score® result was calculated using the same pre-specified gene list and algorithm as previously validated in QUASAR and CALGB 9581.

Contribution of Recurrence Score® Result Beyond Clinical and Pathologic Covariates Pre-specified Multivariate Analysis (n=892)

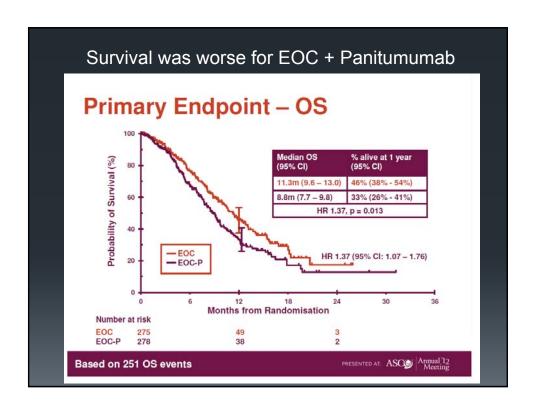
Variable	Value	HR	HR 95% CI	P value
Stage				<0.001
(by nodal status)	Stage III A/B vs II	0.97	(0.55,1.71)	
	Stage III C vs II	2.07	(1.16,3.68)	
Treatment	5FU+Ox vs 5FU	0.82	(0.64,1.06)	0.12
MMR	MMR-D vs MMR-P	0.27	(0.12,0.62)	<0.001
T-stage	T4 st II & T3-T4 st III vs T3 st II & T1-T2 st III	3.04	(1.84,5.02)	<0.001
Nodes examined	<12 vs ≥12	1.51	(1.17,1.95)	0.002
Tumor grade	High vs Low	1.36	(1.02,1.82)	0.041
RS	per 25 units	1.57	(1.19,2.08)	0.001


 The Recurrence Score value is significantly associated with risk of recurrence after controlling for effects of T and N stage, MMR status, number of nodes examined, grade and treatment.


Summary

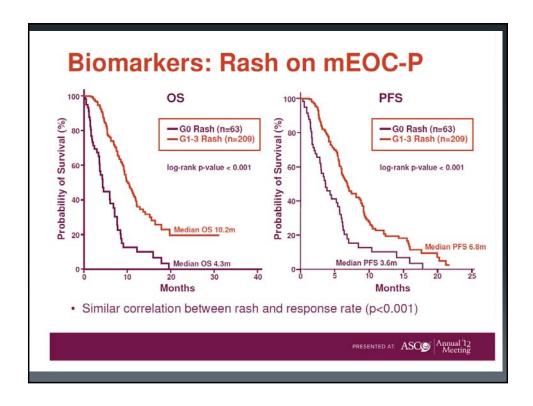
- The Recurrence Score result predicts recurrence risk in stage II and III colon Ca patients treated with 5FU or 5FU+oxaliplatin.
 - RS performs similarly in stage II and stage III colon cancer.
 - RS predicts recurrence risk beyond T and N stage, MMR status, number of nodes examined, grade and treatment.
- With similar relative risk reduction observed for oxaliplatin across the range of Recurrence Score values, the Recurrence Score result enables better discrimination of absolute oxaliplatin benefit as a function of risk.
 - Absolute benefits of oxaliplatin increases with increasing Recurrence Score values, most apparently in stage II and stage IIIA/B patients.
- The Recurrence Score result also predicts DFS and OS.

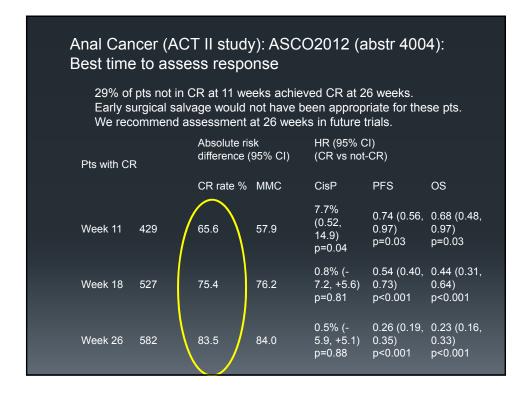
Metastatic Esophago-Gastric Cancer: Where we were


- REAL2 trial2: EOC vs ECF (median OS 11.2mo vs 9.9mo, p=0.020; HR 0.80, 95% CI 0.66-0.97)¹
- For gastric cancer patients, overall survival was longer with DCF versus CF (23% risk reduction; log-rank P = .02)²
 - 1. Cunningham et al, NEJM 2008
 - 2. J Clin Oncol. 2006 Nov 1;24(31):4991-7.

Key Eligibility Criteria

- Inoperable locally advanced / metastatic adenocarcinoma or undifferentiated carcinoma oesophagus, GOJ, stomach
- RECIST-measurable disease
- No prior chemotherapy / radiotherapy including previous adjuvant therapy
- PS 0, 1 or 2
- · Archival tissue available for biomarker analyses
- Locally advanced tumours suitable for chemo-radiotherapy excluded
- EGFR positivity / HER-2 status / KRAS mutation status not required for study entry




Poorer OS outcome possibly due to reduced chemotherapy delivery in mEOC-P arm

- lower doses of oxaliplatin and capecitabine
- lower median number of cycles

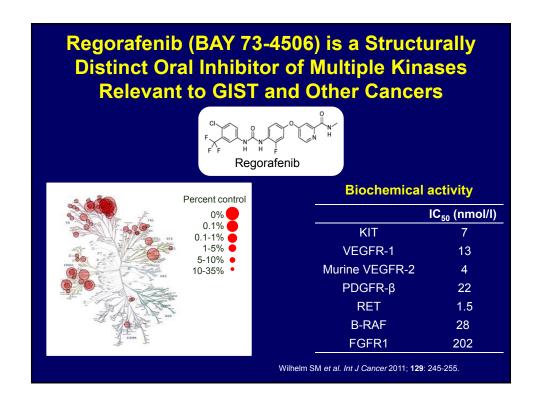
		EOC	mEOC-P
Median no. of cycles (n)		6	5
Dose intensity for cycles given (% of expected dose in each arm)	Epirubicin	89.9%	89.1%
	Oxaliplatin	89.9%	89.6%*
	Capecitabine	91.0%	86.9%*
	Panitumumab	-	88.1%
Dose reductions due to toxicity	36%	39%	
Treatment cessation due to toxi	18%	18%	

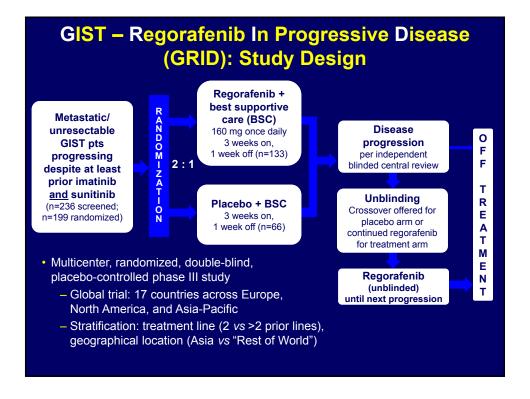
^{*} Not including protocol-specified baseline dose reductions

Gastrointestinal Stromal Tumor

 Imatinib and sunitinib are currently the only two drugs approved for the treatment of advanced GIST Randomized Phase III Trial of Regorafenib in Patients (pts) with Metastatic and/or Unresectable Gastrointestinal Stromal Tumor (GIST) Progressing Despite Prior Treatment with at least Imatinib (IM) and Sunitinib (SU): The GRID Trial

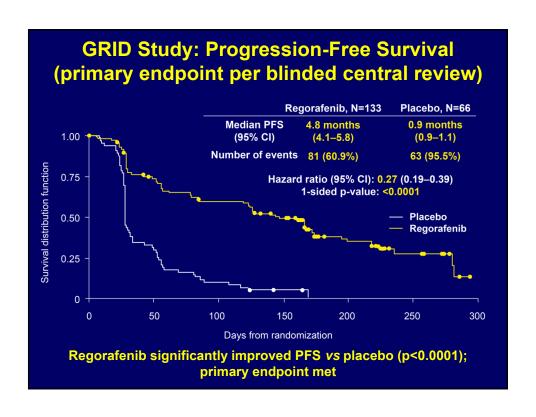
GD Demetri, P Reichardt, Y-K Kang, J-Y Blay, H Joensuu, RG Maki, P Rutkowski, P Hohenberger, H Gelderblom, MG Leahy, M von Mehren, P Schöffski, ME Blackstein, A Le Cesne, G Badalamenti, J-M Xu, T Nishida, D Laurent, I Kuss, and PG Casali, on behalf of GRID Investigators

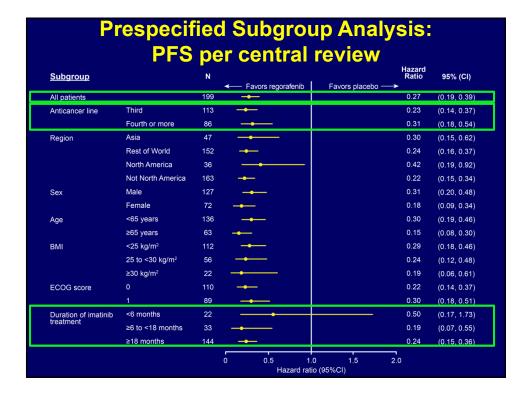

Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA;

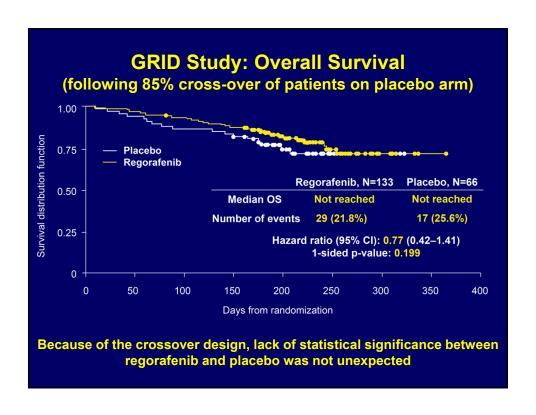

HELIOS Klinikum,Bad Saarow, Germany; Asan Medical Center, Seoul, South Korea; Centre Léon Bérard, Lyon, France; Helsinki University Central Hospital, Helsinki, Finland; Mount Sinai School of Medicine,New York, NY, USA; Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland; Mannheim University Medical Center, Mannheim, Germany;

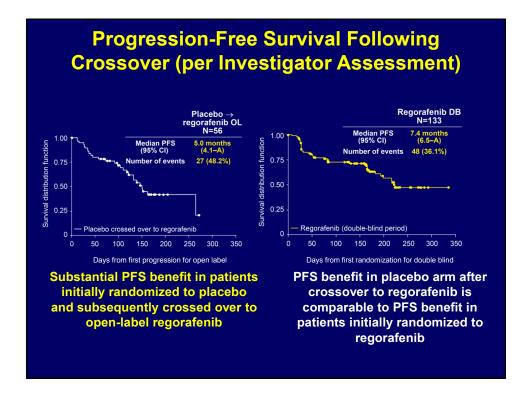
Leiden University Medical Center, Leiden, Netherlands; Christie NHS Foundation Trust, Manchester, UK; Fox Chase Cancer Center, Philadelphia, PA, USA; Universitaire Ziekenhuis Gasthuisberg, Leuven, Belgium; Mount Sinai Hospital, Toronto, Canada; Institut Gustave Roussy, Villejuif, France; University of Palermo, Italy; Affiliated Hospital of Academy Military Medical Sciences, Beijing, China; Department of Surgery, Osaka Police Hospital, Osaka, Japan;

Bayer HealthCare Pharmaceuticals, Berlin, Germany; Istituto Nazionale dei Tumori, Milan, Italy








GRID Study: Patient Eligibility						
Key exclusion criteria						
Prior treatment with any VEGFR inhibitors other than sunitinib						
Other cancer (different histology) within 5 years prior to randomization						
Major surgical procedure, open biopsy, or significant trauma <28 days before study						
Pregnancy or breastfeeding						
Cardiovascular dysfunction: Congestive heart failure Myocardial infarction <6 months before study Cardiac arrhythmias requiring therapy Uncontrolled hypertension Unstable or new-onset angina						

	Regorafenib (N=133) n (%)	Placebo (N=66) n (%)
Imatinib	133 (100.0)	66 (100.0)
Sunitinib	133 (100.0)	66 (100.0)
Nilotinib	29 (21.8)	20 (30.3)
Other tyrosine kinase inhibitors	2 (1.5)	1 (1.5)
mTOR inhibitor	3 (2.3)	1 (1.5)
Cytotoxic chemotherapy	13 (9.8)	2 (3.0)
Other	5 (3.8)	1 (1.5)

	Regorafenib (N=133) n (%)	Placebo (N=66) n (%)
Disease control rate CR + PR + durable SD (≥12wks)	70 (52.6)	6 (9.1)
Objective response rate	6 (4.5)	1 (1.5)
Complete response	0 (0.0)	0 (0.0)
Partial response	6 (4.5)	1 (1.5)
Stable disease (at any time)	95 (71.4)	22 (33.3)
Progressive disease	28 (21.1)	42 (63.6)

Drug-Related Treatment-Emergent Adverse Events in ≥10% of Patients During Double-Blind Treatment								
	Regorafenib (N=132), % Median 23 wks exposure				Placebo (N=66), % Median 7 wks exposure			
Grade	All	3	4	5	All	3	4	5
Hand-foot skin reaction	56.1	19.7	0	0	15.2	1.5	0	0
Hypertension	48.5	22.7	8.0	0	16.7	3.0	0	0
Diarrhea	40.9	5.3	0	0	7.6	0	0	0
Fatigue	38.6	2.3	0	0	27.3	1.5	0	1.5
Mucositis, oral	37.9	1.5	0	0	9.1	1.5	0	0
Alopecia	23.5	1.5	0	0	3.0	0	0	0
Hoarseness	22.0	0	0	0	4.5	0	0	0
Treatment-Emergent Adverse Events Leading to Permanent Discontinuation of Study Treatment Regorafenib Placebo								
	<u>Regorafenib</u> 8 (6.1%)			5 (7.6%)				

Baseline GIST Genotype per Site Reports: Exploratory Analysis of Outcomes									
Tumor genotype, n (%)				Plac	ebo	Regorafen	ib Total	
Prior GIST genotype available and reported at study entry (% total study population)						1.5%)	60 (45.1%	6) 96 (48.2%)	
KIT exon 11 mutation						17 (47.2%) 34 (56.7%		51 (53.1%)	
KIT exon 9 mutation						.7%)	9 (15.0%) 15 (15.6%)	
Wild type KIT and PDGFRA						6%)	6 (10.0%) 8 (8.3%)	
Unspecified or other exon mutant).5%)	11 (18.3%	22 (22.9%)	
Progression-free survival									
Mutation biomarker	N	Events	HR	95%	6 CI		lacebo, an months	Regorafenib, median months	
KIT exon 11 mutation	51	40	0.212	0.098	0.458		1.1	5.6	
KIT exon 9 mutation	15	11	0.239	0.065	0.876		0.9	5.4	

Conclusions

- Regorafenib significantly increases PFS compared with placebo in patients with metastatic or unresectable GIST progressing despite prior therapy with at least imatinib and sunitinib
 - -PFS: median 4.8 vs 0.9 months, HR 0.27, p<0.0001
- No new or unexpected safety findings with regorafenib
 - Most common grade ≥3 adverse events related to regorafenib were hand-foot skin reaction, hypertension, and diarrhea
- Regorafenib has the potential to fulfill an unmet need for advanced GIST patients progressing after imatinib and sunitinib
 - Potential new standard of care for this patient population

Advanced HCC treated with SOR prophylactic urea-based cream or best supportive care after HSFR

	Urea Cream	Placebo
All grade HFSR	56%	74% (P<0.0001)
≥ Grade II HFSR	22%	29% (p=0.1638)
Time to 1st HFSR	84d	34d (P<0.001)

Ren, ASCO2012 (abstr 4008)

Pancreatic cancer: Not a big year at ASCO

- FIRGEM: FOLFIRI for 2 mo alternating with GEM vs GEM in metastatic pancreatic cancer: PFS at 6 months of 48% vs 30% (ASCO2012: Abst 4018)
- cixutumumab (IGF-1R inhibitor) did not improve the PFS or OS of patients with metastatic PAC treated with erlotinib and G in a molecularly unselected population (ASCO2012 4019)
- Gem/Vismodegib (HH inhibitor): Median OS: 6.3/5.4 mo; 1Y survival (%): 24/24. (ASCO 2012;4022)
- Maintenance sunitinib: 6 mo PFS better for maintenance sutent 23 vs 3% (P=0.01); 2y OS: 25 vs 4% (P=.09). (ASCO2012;Abstr 4017)

Questions?